Proposal for the Design of Monitoring and Operating Irrigation Networks Based on IoT, Cloud Computing and Free Hardware Technologies
<p>Data rate vs. range in communication networks. Source: [<a href="#B27-sensors-19-02318" class="html-bibr">27</a>].</p> "> Figure 2
<p>SIGFOX coverage. Reference: [<a href="#B29-sensors-19-02318" class="html-bibr">29</a>].</p> "> Figure 3
<p>Gateways assigned to TTN in Spain. Source: [<a href="#B30-sensors-19-02318" class="html-bibr">30</a>].</p> "> Figure 4
<p>Qualitative comparison between SIGFOX, LORAWAN and NBIoT (Source: Own elaboration).</p> "> Figure 5
<p>Top IoT platforms. Source: [<a href="#B41-sensors-19-02318" class="html-bibr">41</a>].</p> "> Figure 6
<p>Local architecture configurations. Source: Own elaboration.</p> "> Figure 7
<p>Proposal for node distribution and local gateway distribution. Source: Own elaboration.</p> "> Figure 8
<p>Farm irrigation and node distribution layout.</p> "> Figure 9
<p>Heltec WiFi LoRa 32.</p> "> Figure 10
<p>Field monitor node.</p> "> Figure 11
<p>SHT15 sensor.</p> "> Figure 12
<p>Electric current consumed by HELTEC Wi-Fi LoRa 32 in its three function modes.</p> "> Figure 13
<p>Upload message structure in SIGFOX.</p> "> Figure 14
<p>Download message structure in SIGFOX.</p> "> Figure 15
<p>SIGFOX network topology.</p> "> Figure 16
<p>Global system architecture.</p> "> Figure 17
<p>Monitor Node.</p> "> Figure 18
<p>Messages sent in SIGFOX backend. Source: [<a href="#B29-sensors-19-02318" class="html-bibr">29</a>].</p> "> Figure 19
<p>Farm location.</p> "> Figure 20
<p>Monitored data at Thingspeak application.</p> ">
Abstract
:1. Introduction and Background
1.1. State of the Art
1.2. Typology of Communication Networks
- Short-range networks.
- Cellular networks.
- Long-range networks.
1.3. IoT Platforms
2. Materials and Methods
2.1. Configuration of the Local System
2.1.1. Local Network Architecture of the Agricultural Farm
- 1-
- Direct access from each node to the cloud: Each node accesses the cloud directly through the available network (Figure 6a). It must be equipped with the communication module that supports the working network (SIGFOX, LORAWAN, etc.). This method does not include communication between nodes, but only vertical communication to the cloud - therefore, it is not necessary to develop any type if infrastructure. When opting for a network that requires pay-per-use in applications with a high number of nodes, this may represent a considerable operating cost.
- 2-
- Access to a local concentrator: A star, tree or mesh local network links to the Internet through a local gateway equipped with a module compatible with the working network (Figure 6b). This solution is conditioned by the distance between nodes and data traffic requirements. The most suitable wireless communication technologies for local network are Wi-Fi, Bluetooth, Zigbee and Lora [9]. Table 1 shows the main characteristics of each technology.
2.1.2. LoRa Hardware Platform for Local Network
2.1.3. Sensors
2.1.4. Power Supply for HELTEC Wi-Fi LoRa 32 Board
- Ir = Running mode current (mA)
- Ita = Transmitting mode average current (mA)
- Ids = Deep sleep mode current (mA)
- tt = Transmitting time (s)
2.1.5. Local Gateway
2.2. Exchanging Information with the Cloud
3. Results
- Monitor node: This is a device consisting of a Heltec ESP32 LoRa board measuring soil moisture through a SHT15 sensor. As shown in Figure 17, the board is powered from the TLP5110 module and the battery pack. To ensure the durability of the electronic devices, the unit has been placed in a PVC box with IP67 protection. The node measures soil moisture every 15 min and sends the data via LoRa network to the local gateway. Once the operation has been performed, a digital output is activated to order the TPL5110 module to disconnect the power supply until the next transmission.
- Hydrant node: Designed similarly to the previous node at a hardware level, although it is not equipped with a humidity sensor. To act on the hydrant valve, digital output from the Heltec ESP32 LoRa board is used. It connects to the gateway every 15 min to request priority and time settings.
- Gateway or local concentrator: It consists of two devices, a Heltec ESP32 LoRa board and an MKR1200 board. The first one operates as a LoRa communications concentrator. Through this element communication is directed to hydrant nodes and from monitor nodes. This board communicates through the serial port with the MKR1200 board, which is the platform that communicates to the cloud.
- SIGFOX backend: The information sent by the local gateway reaches the SIGFOX web platform where data are sent to the IoT platform. This process is bidirectional, the backend receives data from the IoT platform to be sent to the MKR1200 board. Figure 18 shows data in the backend.
- IoT platform: ThingSpeak receives information from field sensors and records it in its own database. At the same time, an application developed in MATLAB® analyses moisture data, and generates priority and run time settings for each hydrant node.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- De Fraiture, C.; Wichelns, D. Satisfying future water demands for agriculture. Agric. Water Manag. 2010, 97, 502–511. [Google Scholar] [CrossRef]
- Melián-Navarro, A.; Molina-Martínez, J.M.; Rodríguez-Díaz, J.A.; Ruiz-Canales, A. Performance indicators to assess the implementation of automation in golf courses located in Southeast Spain. Agric. Water Manag. 2017, 183, 35–40. [Google Scholar] [CrossRef]
- Ruiz-Canales, A.; Molina-Martínez, J.M. Automatización y Telecontrol de Sistemas de Riego; Marcombo: Barcelona, Spain, 2010. [Google Scholar]
- Díaz, S.E.; Pérez, J.C.; Mateos, A.C.; Marinescu, M.C.; Guerra, B.B. A novel methodology for the monitoring of the agricultural production process based on wireless sensor networks. Comput. Electron. Agric. 2011, 76, 252–265. [Google Scholar] [CrossRef]
- Aqeel-Ur-Reehman; Abbasi, A.Z.; Islam, N.; Shaikh, Z.A. A review of wireless sensors and networks’ applications in agriculture. Comput. Stand. Interfaces 2014, 36, 263–270. [Google Scholar] [CrossRef]
- Popović, T.; Latinović, N.; Pešić, A.; Zečević, Ž.; Krstajić, B.; Djukanović, S. Architecting an IoT-enabled platform for precision agriculture and ecological monitoring: A case study. Comput. Electron. Agric. 2017, 140, 255–265. [Google Scholar] [CrossRef]
- Kamilaris, A.; Kartakoullis, A.; Prenafeta-Boldú, F.X. A review on the practice of big data analysis in agriculture. Comput. Electron. Agric. 2017, 143, 23–37. [Google Scholar] [CrossRef]
- Ojha, T.; Misra, S.; Raghuwanshi, N.S. Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Comput. Electron. Agric. 2015, 118, 66–84. [Google Scholar] [CrossRef]
- Ruiz-Canales, A.; Ferrández-Villena, M. New proposals in the automation and remote control of water management in agriculture: Agromotic systems. Agric. Water Manag. 2015, 151, 1–3. [Google Scholar] [CrossRef]
- Migliaccio, K.W.; Morgan, K.T.; Fraisse, C.; Vellidis, G.; Andreis, J.H. Performance evaluation of urban turf irrigation smartphone app. Comput. Electron. Agric 2015, 118, 136–142. [Google Scholar] [CrossRef]
- Montoya, F.G.; Gómez, J.; Cama, A.; Zapata-Sierra, A.; Martínez, F.; De La Cruz, J.L.; Manzano-Agugliaro, F. A monitoring system for intensive agriculture based on mesh networks and the android system. Comput. Electron. Agric. 2013, 99, 14–20. [Google Scholar] [CrossRef]
- Fernández García, I.; Montesinos, P.; Camacho Poyato, E.; Rodríguez Díaz, J.A. Energy cost optimization in pressurized irrigation networks. Irrig. Sci. 2016, 34, 1–13. [Google Scholar] [CrossRef]
- Moreno, M.A.; Carrión, P.A.; Planells, P.; Ortega, J.F.; Tarjuelo, J.M. Measurement and improvement of the energy efficiency at pumping stations. Biosyst. Eng. 2007, 98, 479–486. [Google Scholar] [CrossRef]
- Sabbagh, E.; Sinai, G. A model for optimal real-time computer control of pumping stations in irrigation systems. Comput. Electron. Agric. 1988, 3, 119–133. [Google Scholar] [CrossRef]
- Stambouli, T.; Faci, J.M.; Zapata, N. Water and energy management in an automated irrigation district. Agric. Water Manag. 2014, 142, 66–76. [Google Scholar] [CrossRef] [Green Version]
- Nikolidakis, S.A.; Kandris, D.; Vergados, D.D.; Douligeris, C. Energy efficient automated control of irrigation in agriculture by using wireless sensor networks. Comput. Electron. Agric. 2015, 113, 154–163. [Google Scholar] [CrossRef]
- Maurya, S.; Jain, V.K. Fuzzy based energy efficient sensor network protocol for precision agriculture. Comput. Electron. Agric. 2016, 130, 20–37. [Google Scholar] [CrossRef]
- Carrillo Cobo, M.T.; Camacho Poyato, E.; Montesinos, P.; Rodríguez Díaz, J.A. New model for sustainable management of pressurized irrigation networks. Application to Bembézar MD irrigation district (Spain). Sci. Total Environ. 2014, 473–474, 1–8. [Google Scholar] [CrossRef]
- Mérida García, A.; Fernández García, I.; Camacho Poyato, E.; Montesinos Barrios, P.; Rodríguez Díaz, J.A. Coupling irrigation scheduling with solar energy production in a smart irrigation management system. J. Clean. Prod. 2018, 175, 670–682. [Google Scholar] [CrossRef]
- Garrigós, J.; Molina, J.M.; Alarcón, M.; Chazarra, J.; Ruiz-Canales, A.; Martínez, J.J. Platform for the management of hydraulic chambers based on mobile devices and Bluetooth Low-Energy motes. Agric. Water Manag. 2017, 183, 169–176. [Google Scholar] [CrossRef]
- Jebril, A.H.; Sali, A.; Ismail, A.; Rasid, M.F.A. Overcoming limitations of LoRa physical layer in image transmission. Sensors 2018, 18, 3257. [Google Scholar] [CrossRef] [PubMed]
- Iova, O.; Murphy, A.; Picco, G.P.; Ghiro, L.; Molteni, D.; Ossi, F.; Cagnacci, F. LoRa from the City to the Mountains: Exploration of Hardware and Environmental Factors. In Proceedings of the International Conference on Embedded Wireless Systems and Networks, Uppsala, Sweden, 20–22 February 2017; pp. 317–322. [Google Scholar]
- Kamalakannan, A.; Rajamanickam, G. Surface defect detection and classification in mandarin fruits using fuzzy image thresholding, binary wavelet transform and linear classifier model. In Proceedings of the 4th International Conference on Advanced Computing (ICoAC), Chennai, India, 13–15 December 2012. [Google Scholar] [CrossRef]
- Centenaro, M.; Vangelista, L.; Zanella, A.; Zorzi, M. Long-range communications in unlicensed bands: The rising stars in the IoT and smart city scenarios. IEEE Wirel. Commun 2016, 23, 60–67. [Google Scholar] [CrossRef]
- Sarri, D.; Martelloni, L.; Vieri, M. Development of a prototype of telemetry system for monitoring the spraying operation in vineyards. Comput. Electron. Agric. 2017, 142, 248–259. [Google Scholar] [CrossRef]
- Mekki, K.; Bajic, E.; Chaxel, F.; Meyer, F. A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express 2019, 5, 1–7. [Google Scholar] [CrossRef]
- Sanchez-Iborra, R.; Cano, M.D. State of the art in LP-WAN solutions for industrial IoT services. Sensors 2016, 16, 708. [Google Scholar] [CrossRef] [PubMed]
- SIGFOX. [WWW Document] SIGFOX. URL. 2018. Available online: http://www.sigfox.com/ (accessed on 21 January 2019).
- The Things Network. [WWW Document]. URL. 2018. Available online: https://www.thethingsnetwork.org/ (accessed on 21 January 2019).
- Tzounis, A.; Katsoulas, N.; Bartzanas, T.; Kittas, C. Internet of Things in agriculture, recent advances and future challenges. Biosyst. Eng. 2017, 164, 31–48. [Google Scholar] [CrossRef]
- Lora Wan. [WWW Document] URL. 2018. Available online: https://lora-alliance.org/ (accessed on 21 January 2019).
- Paul, J.D.; Buytaert, W. Citizen Science and Low-Cost Sensors for Integrated Water Resources Management. In Advances in Chemical Pollution, Environmental Management and Protection; Elsevier Ltd.: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Jawad, H.; Nordin, R.; Gharghan, S.; Jawad, A.; Ismail, M. Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review. Sensors 2017, 17, 1781. [Google Scholar] [CrossRef] [PubMed]
- Arduino, Arduino. [WWW Document] URL. 2017. Available online: https://www.arduino.cc/ (accessed on 20 January 2019).
- Goap, A.; Sharma, D.; Shukla, A.K.; Rama Krishna, C. An IoT based smart irrigation management system using Machine learning and open source technologies. Comput. Electron. Agric. 2018, 155, 41–49. [Google Scholar] [CrossRef]
- Ravazzani, G. Open hardware portable dual-probe heat-pulse sensor for measuring soil thermal properties and water content. Comput. Electron. Agric. 2017, 133, 9–14. [Google Scholar] [CrossRef]
- Coates, R.W.; Delwiche, M.J.; Broad, A.; Holler, M. Wireless sensor network with irrigation valve control. Comput. Electron. Agric 2013, 96, 13–22. [Google Scholar] [CrossRef]
- CropX Inc. [WWW Document] URL. 2016. Available online: https://www.cropx.com/ (accessed on 21 January 2019).
- GetSenso. [WWW Document] URL. 2016. Available online: http://www.getsenso.com/iot-solution/greenhouse-monitoring/ (accessed on 21 January 2019).
- The 2016 Hackster.io Maker Survey Official Report. [WWW Document] URL. 2016. Available online: https://www.hackster.io/survey (accessed on 21 January 2019).
- Augustin, A.; Yi, J.; Clausen, T.; Townsley, W. A Study of LoRa: Long Range & Low Power Networks for the Internet of Things. Sensors 2016, 16, 1466. [Google Scholar] [CrossRef]
- Posadillo, R.; López Luque, R. A sizing method for stand-alone PV installations with variable demand. Renew. Energy 2008, 33, 1049–1055. [Google Scholar] [CrossRef]
- Thing Speak. [WWW Document] URL. 2018. Available online: https://thingspeak.com/ (accessed on 21 January 2019).
Parameter | Wi-Fi | Bluetooth | Zigbee | Lora |
---|---|---|---|---|
Standard | IEEE 802.11 a,b,g,n | 802.15.1 | 802.15.4 | 802.15.4g |
Frequency | 2,4 GHz | 2,4 GHz | 868/915 MHz, 2,4 GHz | 433/868/915 MHz |
Data rate | 2–54 Mbps | 1–24 Mbps | 20–250 kbps | 0.3–50 kbps |
Transmission Range | 20–100 m | 8–10 m | 10–20 m | >500 m [42] |
Topology | Star | Star | Tree, star, mesh | Star |
Energy consumption | High | Medium | Low | Very Low |
Cost | Low | Low | Low | Low |
LoRa 32u4 II | Heltec WiFi LoRa 32 V2 | SparkX SAMD21 Pro RF 1W LoRa | Pycom Lopy 4 | TTGO LoRa32 T-Beam | TTGO LoRa32 V2.1 | |
---|---|---|---|---|---|---|
Microcontroller | ATMEGA 32u4 | ESP32 | SAMD21 | ESP32 | ESP32 | ESP32 |
Programming | Arduino IDE Compatibility | Arduino IDE Compatibility | Arduino IDE Compatibility | MicroPython | Arduino IDE Compatibility | Arduino IDE Compatibility |
Lora Chipset | SEMTECH SX1276 | SEMTECH SX1276 | SEMTECH SX1276 | SEMTECH SX1276 | SEMTECH SX1276 | SEMTECH SX1276 |
Transmitting power | +20 dB | +20 dB | +30 dB | +20 dB | +20 dB | +20 dB |
Operating frequency | 868–915 MHz | 868–915 MHz | 868–915 MHz | 868–915 MHz | 868–915 MHz | 868–915 MHz |
ROM | 32 kB | 448 kB | 256 kB | 448 kB | 448 kB | 448 kB |
RAM | 2 kB | 520 kB | 32 kB | 520 kB | 520 kB | 520 kB |
Logic level | 3.3 V | 3.3 V | 3.3 V | 3.3 V | 3.3 V | 3.3 V |
Analog input | 10 | 18 | 5 | 18 | 18 | 10 |
Digital I/O | 20 | 28 | 2 | 23 | 16 | 17 |
Transmit current | 128 mA | 146 mA | 108 mA | |||
Standby current | 11 mA | 46 mA | 35 mA | |||
Deep sleep current | 300 µA | 2,4 mA | 1 µA | |||
Other Features | Wi-Fi, BLE | Wi-Fi, BLE, OLED display | Wi-Fi, BLE, SIGFOX | Wi-Fi, BLE, GPS, CANBus, SMA connector | OLED display, Wi-Fi, SMA connector | |
Price | 30 € | 12 € | 45 € | 35 € | 20 € | 20 € |
Ir (mA) | Ita (mA) | Ids (mA) | tt (s) |
---|---|---|---|
50.1 | 71.7 | 11.9 | 0.2384 |
Frequency (h) | Running Mode Consumption (mAh) | Transmitting Mode Consumption (mAh) | Deep Sleep Mode Consumption (mAh) | Total (mAh/day) |
---|---|---|---|---|
0.25 | 1.34 | 0.46 | 285.60 | 287.39 |
0.5 | 0.67 | 0.23 | 285.60 | 286.50 |
1 | 0.33 | 0.11 | 285.60 | 286.05 |
2 | 0.17 | 0.06 | 285.60 | 285.82 |
6 | 0.06 | 0.02 | 285.60 | 285.67 |
12 | 0.03 | 0.01 | 285.60 | 285.64 |
24 | 0.01 | 0.005 | 285.60 | 285.62 |
Number of Modules | Number of Parallel Cells | LLP (%) |
---|---|---|
1 | 1 | 0.3 |
1 | 2 | 0 |
2 | 1 | 0 |
Frequency (h) | Running Mode Consumption (mAh) | Transmitting Mode Consumption (mAh) | Disconnection Mode Consumption (mAh) | Total (mAh/day) |
---|---|---|---|---|
0.25 | 1.34 | 0.46 | 0.72 | 2.51 |
0.5 | 0.67 | 0.23 | 0.72 | 1.62 |
1 | 0.33 | 0.11 | 0.72 | 1.17 |
2 | 0.17 | 0.06 | 0.72 | 0.94 |
6 | 0.06 | 0.02 | 0.72 | 0.79 |
12 | 0.03 | 0.01 | 0.72 | 0.76 |
24 | 0.01 | 0.005 | 0.72 | 0.74 |
MTDuino-SFM2CWW001 | Pycom SiPy | Arduino MKR 1200 | |
---|---|---|---|
Microcontroller | ATSAMD21 | ESP32 | ATSAMD21 |
Programming | Arduino IDE Compatibility | MicroPython | Arduino IDE Compatibility |
Transmitting power | 14/22 dBm (Europe/America) | ||
Operating frequency | 868–915 MHz | 868–915 MHz | 868 MHz |
ROM | 256 kB | 4 MB | 256 kB |
RAM | 32 kB | 512 kB | 32 kB |
Logic level | 3.3 V | 2.2 V | 3.3 V |
Analog input | 6 | 8 | 7 |
Digital I/O | 20 | 24 | 20 |
Other Features | Wi-Fi, BLE |
Concept | Node Type Monitor | Node Type Hydrant | Gateway |
---|---|---|---|
Placa Heltec Wi-Fi LoRa 32 V2 | €20 | €20 | €20 |
MKR1200 board | - | - | €35 |
SHT15 Soil Moisture sensor | €20 | - | - |
TPL5110 timer | €4 | €4 | - |
Li-Ion Battery | €5 | €5 | - |
Relay module | - | €2 | - |
Enclosure | €8 | €8 | €12 |
AC DC adapter | - | - | €3 |
Others | €2 | €2 | €2 |
Total costs | €59 | €41 | €72 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Ahumada, L.M.; Ramírez-Faz, J.; Torres-Romero, M.; López-Luque, R. Proposal for the Design of Monitoring and Operating Irrigation Networks Based on IoT, Cloud Computing and Free Hardware Technologies. Sensors 2019, 19, 2318. https://doi.org/10.3390/s19102318
Fernández-Ahumada LM, Ramírez-Faz J, Torres-Romero M, López-Luque R. Proposal for the Design of Monitoring and Operating Irrigation Networks Based on IoT, Cloud Computing and Free Hardware Technologies. Sensors. 2019; 19(10):2318. https://doi.org/10.3390/s19102318
Chicago/Turabian StyleFernández-Ahumada, Luis Manuel, Jose Ramírez-Faz, Marcos Torres-Romero, and Rafael López-Luque. 2019. "Proposal for the Design of Monitoring and Operating Irrigation Networks Based on IoT, Cloud Computing and Free Hardware Technologies" Sensors 19, no. 10: 2318. https://doi.org/10.3390/s19102318
APA StyleFernández-Ahumada, L. M., Ramírez-Faz, J., Torres-Romero, M., & López-Luque, R. (2019). Proposal for the Design of Monitoring and Operating Irrigation Networks Based on IoT, Cloud Computing and Free Hardware Technologies. Sensors, 19(10), 2318. https://doi.org/10.3390/s19102318