A New Angular Light Scattering Measurement of Particulate Matter Mass Concentration for Homogeneous Spherical Particles
<p>The calculated relative phase function <span class="html-italic">I</span>(<span class="html-italic">θ</span>)/<span class="html-italic">I</span>(45°) for different quartz particle sizes.</p> "> Figure 2
<p>The calculated ripple position with the ripple number for the different sized quartz particles.</p> "> Figure 3
<p>The calculated relationships between the averaged ripple width and particle size for quartz particles.</p> "> Figure 4
<p>The relative phase function <span class="html-italic">I</span>(<span class="html-italic">θ</span>)/<span class="html-italic">I</span>(45°) with different particle size and the relationship between average ripple width and the particle size are shown in the left and right panels, respectively, for (<b>a</b>,<b>b</b>) polystyrene particles and (<b>c</b>,<b>d</b>) coal dust.</p> "> Figure 5
<p>Comparison of the fitting curves between ripple width and particle size for particles with different refractive indexes.</p> "> Figure 6
<p>Schematic diagram of the integrated experimental setup (<b>a</b>) and the light path (<b>b</b>).</p> "> Figure 7
<p>Scanning electron micrographs of the four spherical quartz aerosol samples of A, B, C and D, respectively (scale 10 μm).</p> "> Figure 8
<p>The size distributions of the four particles measured using the reference method.</p> "> Figure 9
<p>Real-time readings of mass concentration measured using the reference method and scattering light intensity during the experiment of sample A at a scattering angle of 45° within 1 min.</p> "> Figure 10
<p>The particle size distributions (PSDs) of the four aerosol samples (A–D). (The histograms represent the measurements of the instruments with 12 size bins, and the curves represent the interpolating fitting with 1000 size bins).</p> "> Figure 11
<p>The simulated relative intensity distributions of the scattered light of the four samples with (<b>a</b>) the measured 12 size bin PSDs and (<b>b</b>) the fitting 1000 size bin PSDs.</p> "> Figure 12
<p>The measured angular distributions of the scattering light (45° as a reference) for the four particle samples A, B, C, and D.</p> "> Figure 13
<p>The correlation of scattering intensities measured by the fixed detector with mass concentration measured by the reference method for the particles A, B, C, and D.</p> "> Figure 14
<p>Comparison of real-time mass concentrations measured using the reference method (an electrical low pressure impactor (ELPI)), light scattering method (LSM), light scattering method combined with the ripple width particle size correction (LSM + RWPS) and light scattering calibrated with known particle (LSM + calibration).</p> ">
Abstract
:1. Introduction
2. Methods and Calculations
2.1. Calculation of Particle Size from the Scattering Ripple Width
2.2. Discussion for Particles with Different Refractive Index
2.3. Method for Particle Mass Concentration Measurement
3. Experimental Section
3.1. Experimental Setup
3.2. Material
3.3. Verification of the Experimental Setup
4. Results and Discussion
4.1. Moderately Polydisperse Particle Size Measurements from Ripple Space
4.2. Particle Size Measurement from the Scattering Ripple Space
4.3. Real-Time Mass Concentration Measured by the Fixed Detector
4.4. Real-Time Mass Concentration Modified by the Simultaneous Measured Particle Size
5. Conclusions
- The ripple widths of the scattering patterns for monodisperse aerosols are well fitted with the particle size by the power law.
- Regarding moderate polydisperse aerosols, the scattering ripples can be washed out by the continuity of the size distribution. Nevertheless, given the artificial limit of the scattering volume, the particles in the scattering volume show discretely, and the scattering ripples can be reconstructed.
- The particle size measured from the ripple width is compared with the particle size measured by ELPI. These measurements exhibit similar tendencies, and the relative error for the ripple width method compared with the ELPI result is less than 15%.
- Particle size and mass concentration were simultaneously measured in our experimental setup, and the measurement error of real-time mass concentration is reduced from 38% to 18% with correction of the simultaneously measured particle size when the particle size has changed.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhao, Y.; Wang, S.; Duan, L.; Lei, Y.; Cao, P.; Hao, J. Primary air pollutant emissions of coal-fired power plants in China: Current status and future prediction. Atmos. Environ. 2008, 42, 8442–8452. [Google Scholar]
- Zheng, C.; Shen, Z.; Yan, P.; Zhu, W.; Chang, Q.; Gao, X.; Luo, Z.; Ni, M.; Cen, K. Particle removal enhancement in a high-temperature electrostatic precipitator for glass furnace. Powder Technol. 2017, 319, 154–162. [Google Scholar] [CrossRef]
- Xu, M.; Yan, R.; Zheng, C.; Qiao, Y.; Han, J.; Sheng, C. Status of trace element emission in a coal combustion process: A review. Fuel Process. Technol. 2004, 85, 215–237. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, X.; Hu, Y.; Jie, X.; Cao, X.E.; Liao, Z.; Xu, M. Investigation on synergistic oxidation behavior of NO and Hg0 during the newly designed fast SCR process. Fuel 2018, 225, 134–139. [Google Scholar] [CrossRef]
- Zheng, C.; Hong, Y.; Liu, S.; Yang, Z.; Chang, Q.; Zhang, Y.; Gao, X. Removal and Emission Characteristics of Condensable Particulate Matter in an Ultralow Emission Power Plant. Energy Fuels 2018, 32, 10586–10594. [Google Scholar] [CrossRef]
- Zheng, C.; Shen, Z.; Chang, Q.; Su, Q.; Zhu, X.; Gao, X. Experimental Study on Electrostatic Precipitation of Low-Resistivity High-Carbon Fly Ash at High Temperature. Energy Fuels 2017, 31, 6266–6273. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, X.; Cui, J.; Chen, D.; Xu, M.; Pan, S.; Zhang, K.; Gao, X. Field measurements on the emission and removal of PM2.5 from coal-fired power stations: 4. PM removal performance of wet electrostatic precipitators. Energy Fuels 2016, 30, 7465–7473. [Google Scholar] [CrossRef]
- Courtney, W.J.; Shaw, R.W.; Dzubay, T.G. Notes. Precision and accuracy of a. beta. gauge for aerosol mass determinations. Environ. Sci. Technol. 1982, 16, 236–239. [Google Scholar] [CrossRef]
- Boothroyd, S.A.; Jones, A.R.; Nicholson, K.W.; Wood, R. Light scattering by fly ash and the applicability of Mie theory. Combust. Flame 1987, 69, 235–241. [Google Scholar] [CrossRef]
- Black, D.L.; Mcquay, M.Q.; Bonin, M.P. Laser-based techniques for particle-size measurement: A review of sizing methods and their industrial applications. Prog. Energy Combust. Sci. 1996, 22, 267–306. [Google Scholar] [CrossRef]
- Ward, M.D.; Buttry, D.A. In situ interfacial mass detection with piezoelectric transducers. Science 1990, 249, 1000. [Google Scholar] [CrossRef]
- Gajewski, J.B. Non-intrusive solids charge and mass flow measurements with an electrostatic flow probe. J. Electrostat. 1999, 46, 271–284. [Google Scholar] [CrossRef]
- Liang, J.T.; Jie, L.U.; Zhu, S.M. Ultrasonic on-line malt dust concentration measurement. Tech. Acoust. 2002. Available online: http://en.cnki.com.cn/Article_en/CJFDTOTAL-SXJS200204006.htm (accessed on 5 April 2019).
- Godefroy, C.; Adjouadi, M. Particle Sizing in a Flow Environment Using Light Scattering Patterns. Part. Part. Syst. Char. 2000, 17, 47–55. [Google Scholar] [CrossRef]
- Pitz, M.; Hellmann, A.; Ripperger, S.; Antonyuk, S. Development of a 3D Light Scattering Sensor for Online Characterization of Aerosol Particles. Part. Part. Syst. Char. 2018, 35, 1800045. [Google Scholar] [CrossRef]
- Zikova, N.; Masiol, M.; Chalupa, D.; Rich, D.; Ferro, A.; Hopke, P. Estimating hourly concentrations of PM2.5 across a metropolitan area using low-cost particle monitors. Sensors 2017, 17, 1922. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Cai, X.; Zhang, J.; Liu, L. Fast nanoparticle sizing by image dynamic light scattering. Particuology 2015, 19, 82–85. [Google Scholar] [CrossRef]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; Wiley & Sons: New York, NY, USA, 1983. [Google Scholar]
- Jones, A.R. Light scattering for particle characterization. Prog. Energy Combust. Sci. 1999, 25, 1–53. [Google Scholar] [CrossRef]
- Jerkovic, A.; Fissan, H.J. Scattered Light Photometer for On-Line monitoring of size distribution parameters and particle number concentration. Part. Part. Syst. Char. 2010, 10, 33–37. [Google Scholar] [CrossRef]
- Roebuck, B.; Vaughan, N.; Chung, K. Performance testing of the OSIRIS dust monitoring system. Ann. Occup. Hyg. 1990, 34, 263–279. [Google Scholar] [PubMed]
- Görner, P.; Bemer, D.; Fabriés, J. Photometer measurement of polydisperse aerosols. J. Aerosol Sci. 1995, 26, 1281–1302. [Google Scholar] [CrossRef]
- Chen, D.; Liu, X.; Han, J.; Jiang, M.; Xu, Y.; Xu, M. Measurements of particulate matter concentration by the light scattering method: Optimization of the detection angle. Fuel Process. Technol. 2018, 179, 124–134. [Google Scholar] [CrossRef]
- Xu, M.; Yu, D.; Yao, H.; Liu, X.; Qiao, Y. Coal combustion-generated aerosols: Formation and properties. Proc. Combust. Inst. 2011, 33, 1681–1697. [Google Scholar] [CrossRef]
- Zhan, Z.; Fry, A.; Yu, D.; Xu, M.; Wendt, J.O.L. Ash formation and deposition during oxy-coal combustion in a 100 kW laboratory combustor with various flue gas recycle options. Fuel Process. Technol. 2016, 141, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Liu, X.; Wang, C.; Xu, Y.; Sun, W.; Cui, J.; Zhang, Y.; Xu, M. Effects of H2O and HCl on particulate matter reduction by kaolin under oxy-coal combustion. Energy Fuels 2017, 31, 6455–6462. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, X.; Wang, H.; Zhang, Y.; Qi, J.; Xu, M. Investigation of simultaneously reducing the emission of ultrafine particulate matter and heavy metals by adding modified attapulgite during coal combustion. Energy Fuels 2019, 33, 1518–1526. [Google Scholar] [CrossRef]
- Hodkinson, J.R. Particle sizing by means of the forward scattering lobe. Appl. Opt. 1966, 5, 839. [Google Scholar] [CrossRef] [PubMed]
- Kerker, M.; Farone, W.A.; Smith, L.B.; Matijević, E. Determination of particle size by the minima and maxima in the angular dependence of the scattered light. Range of validity of the method. J. Colloid Sci. 1964, 19, 193–200. [Google Scholar] [CrossRef]
- Sorensen, C.M.; Shi, D. Patterns in the ripple structure of Mie scattering. J. Opt. Soc. Am. A 2002, 19, 122. [Google Scholar] [CrossRef]
- Berg, M.J. Power-law patterns in electromagnetic scattering: A selected review and recent progress. J. Quant. Spectrosc. Radiat. Transf. 2012, 113, 2292–2309. [Google Scholar] [CrossRef]
- Ghosh, N.; Buddhiwant, P.; Uppal, A.; Majumder, S.K. Simultaneous determination of size and refractive index of red blood cells by light scattering measurements. Appl. Phys. Lett. 2006, 88, 084101–084101–3. [Google Scholar] [CrossRef]
- Pan, Y.L.; Berg, M.J.; Zhang, S.S.; Noh, H.; Cao, H.; Chang, R.K.; Videen, G. Measurement and autocorrelation analysis of two-dimensional light-scattering patterns from living cells for label-free classification. Cytometry Part A 2011, 79, 284. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, Z.; Edwards, R.D.; Johnson, M.; Shields, K.N.; Allen, T.; Canuz, E.; Smith, K.R. An inexpensive light-scattering particle monitor: Field validation. J. Environ. Monit. 2007, 9, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Van de Hulst, H.C. Light Scattering by Small Particles; John Wiley & Sons: New York, NY, USA, 1957. [Google Scholar]
- Mätzler, C. MATLAB Functions for Mie Scattering and Absorption. 2002. Available online: http://www.atmo.arizona.edu/students/courselinks/spring08/atmo336s1/courses/spring09/atmo656b/maetzler_mie_v2.pdf (accessed on 5 April 2019).
- Xu, M.; Alfano, R.R. More on patterns in Mie scattering. Opt. Commun. 2003, 226, 1–5. [Google Scholar] [CrossRef]
- Moosmüller, H.; Sorensen, C.M. Small and Large Particle Limits of Single Scattering Albedo for Homogeneous, Spherical Particles. J. Quant. Spectrosc. Radiat. Transf. 2017, 204, 250–255. [Google Scholar] [CrossRef]
- Moosmüller, H.; Sorensen, C.M. Single scattering albedo of homogeneous, spherical particles in the transition regime. J. Quant. Spectrosc. Radiat. Transf. 2018, 219, 333–338. [Google Scholar] [CrossRef]
- Sorensen, C.M.; Maughan, J.B.; Moosmüller, H. Spherical particle absorption over a broad range of imaginary refractive index. J. Quant. Spectrosc. Radiat. Transf. 2019, 226, 81–86. [Google Scholar] [CrossRef]
- Gogoi, A.; Buragohain, A.K.; Choudhury, A.; Ahmed, G.A. Laboratory measurements of light scattering by tropical fresh water diatoms. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 1566–1578. [Google Scholar] [CrossRef]
- Gouesbet, G.; Gréhan, G.; Maheu, B. Single scattering characteristics of volume elements in coal clouds. Appl. Opt. 1983, 22, 2038–2050. [Google Scholar] [CrossRef]
- Keskinen, J.; Pietarinen, K.; Lehtimäki, M. Electrical low pressure impactor. J. Aerosol Sci. 1992, 23, 353–360. [Google Scholar] [CrossRef]
- Mercer, T.T. Production and characterization of aerosols. Arch. Intern. Med. 1973, 131, 39–50. [Google Scholar] [CrossRef]
- Maricq, M.M.; Xu, N.; Chase, R.E. Measuring Particulate Mass Emissions with the Electrical Low Pressure Impactor. Aerosol Sci. Technol. 2006, 40, 68–79. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Xu, Y.; Fan, B.; Lv, C.; Xu, M.; Pan, S.; Zhang, K.; Li, L.; Gao, X. Field measurements on the emission and removal of PM2.5 from coal-fired power stations: 2. studies on two 135 MW CFB boilers respectively equipped with electrostatic precipitator and hybrid electrostatic filter precipitator. Energy Fuels 2016, 30, 5922–5929. [Google Scholar] [CrossRef]
- Chamaillard, K.; Jennings, S.G.; Kleefeld, C.; Ceburnis, D.; Yoon, Y.J. Light backscattering and scattering by nonspherical sea-salt aerosols. J. Quant. Spectrosc. Radiat. Transf. 2003, 79, 577–597. [Google Scholar] [CrossRef] [Green Version]
- Khlebtsov, N.G.; Bogatyrev, V.A.; Dykman, L.A.; Melnikov, A.G. Spectral Extinction of Colloidal Gold and Its Biospecific Conjugates. J. Colloid Interface Sci. 1996, 180, 436–445. [Google Scholar] [CrossRef]
- Jurányi, Z.; Burtscher, H.; Loepfe, M.; Nenkov, M.; Weingartner, E. Dual-wavelength light scattering for selective detection of volcanic ash particles. Atmos. Meas. Tech. Discuss. 2015, 8, 8701–8726. [Google Scholar] [CrossRef]
- Yurkin, M.A.; Hoekstra, A.G. The discrete-dipole-approximation code ADDA: Capabilities and known limitations. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 2234–2247. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Travis, L.D. T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 1994, 109, 16–21. [Google Scholar] [CrossRef]
- Yang, P.; Feng, Q.; Hong, G.; Kattawar, G.W.; Wiscombe, W.J.; Mishchenko, M.I.; Dubovik, O.; Laszlo, I.; Sokolik, I.N. Modeling of the scattering and radiative properties of nonspherical dust-like aerosols. J. Aerosol Sci. 2007, 38, 995–1014. [Google Scholar] [CrossRef]
- Mishchenko, M.I. Electromagnetic scattering by nonspherical particles: A tutorial review. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 808–832. [Google Scholar] [CrossRef]
- Zubko, E.S. Light Scattering by Irregularly Shaped Particles with Sizes Comparable to the Wavelength; Springer: Berlin Heidelberg, Germany, 2012; pp. 39–74. [Google Scholar]
- Sorensen, C.M.; Zubko, E.; Heinson, W.R.; Chakrabarti, A. Q-space analysis of scattering by small irregular particles. J. Quant. Spectrosc. Radiat. Transf. 2014, 133, 99–105. [Google Scholar] [CrossRef] [Green Version]
- O’Shaughnessy, P.T.; Slagley, J.M. Photometer response determination based on aerosol physical characteristics. AIHA J. 2002, 63, 578–585. [Google Scholar] [CrossRef]
- Chekan, G.J.; Colinet, J.F.; Kissell, F.N.; Rider, J.P.; Vinson, R.P.; Volkwein, J.C. Performance of a light-scattering dust monitor in underground mines. Transactions 2007. Available online: https://www.cdc.gov/niosh/mining/UserFiles/works/pdfs/poals.pdf (accessed on 5 April 2019).
- Vesilind, P.A. The Rosin-Rammler particle size distribution. Resour. Recovery Conserv. 1980, 5, 275–277. [Google Scholar] [CrossRef]
D/μm | 0.5 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
Slope | 63.9 | 30.6 | 19.5 | 13.8 | 11.3 | 8.1 | 7.0 | 5.9 | 5.3 | 4.6 |
R2 | / | 0.995 | 0.994 | 0.997 | 0.997 | 0.999 | 0.999 | 0.998 | 0.996 | 0.995 |
Di (μm) | Number Concentration (cm−3) | Mass Concentration (mg/m3) | Particle Number |
---|---|---|---|
0.11 | 4432 | 0.01 | 69.59 |
0.18 | 1694 | 0.01 | 26.60 |
0.29 | 944 | 0.03 | 14.82 |
0.47 | 652 | 0.10 | 10.23 |
0.77 | 670 | 0.42 | 10.52 |
1.22 | 593 | 1.51 | 9.31 |
1.94 | 208 | 2.11 | 3.27 |
3.15 | 24 | 1.03 | 0.37 |
4.94 | 9 | 1.49 | 0.14 |
Total | 9227 | 6.71 | 145 |
Sample | Ripple Number n | Total Ripple Width ∑Δθ/° | Average Ripple Width Δθ/° | Particle Size D/μm | EPLI Measurements D/μm | Error |
---|---|---|---|---|---|---|
A | 4 | 85° | 21° | 1.72 | 2.02 | 15% |
B | 4 | 80° | 20° | 1.84 | 2.03 | 9% |
C | 5 | 80° | 16° | 2.36 | 2.62 | 10% |
D | 5 | 75° | 15° | 2.54 | 2.63 | 3% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Liu, X.; Han, J.; Jiang, M.; Wang, Z.; Qi, J. A New Angular Light Scattering Measurement of Particulate Matter Mass Concentration for Homogeneous Spherical Particles. Sensors 2019, 19, 2243. https://doi.org/10.3390/s19102243
Chen D, Liu X, Han J, Jiang M, Wang Z, Qi J. A New Angular Light Scattering Measurement of Particulate Matter Mass Concentration for Homogeneous Spherical Particles. Sensors. 2019; 19(10):2243. https://doi.org/10.3390/s19102243
Chicago/Turabian StyleChen, Dong, Xiaowei Liu, Jinke Han, Meng Jiang, Zhaofeng Wang, and Jiuxin Qi. 2019. "A New Angular Light Scattering Measurement of Particulate Matter Mass Concentration for Homogeneous Spherical Particles" Sensors 19, no. 10: 2243. https://doi.org/10.3390/s19102243
APA StyleChen, D., Liu, X., Han, J., Jiang, M., Wang, Z., & Qi, J. (2019). A New Angular Light Scattering Measurement of Particulate Matter Mass Concentration for Homogeneous Spherical Particles. Sensors, 19(10), 2243. https://doi.org/10.3390/s19102243