A Novel Wearable EEG and ECG Recording System for Stress Assessment
<p>Circuit diagram of the wearable electroencephalogram (EEG) and electrocardiogram (ECG) recording system.</p> "> Figure 2
<p>Placements and differential inputs of the electrodes for recording of the two EEG signals and one ECG signal (Active 1 – Active 2 = ECG, Active 1 − Reference = Right EEG, Active 2 − Reference = Left EEG).</p> "> Figure 3
<p>The methods for inducing stress: (<b>a</b>) the Stroop color word test, and (<b>b</b>) an illustration of the mental arithmetic test.</p> "> Figure 4
<p>The stress test protocol employed herein.</p> "> Figure 5
<p>Photographic image of the experimental setup employed for the stress test.</p> "> Figure 6
<p>Photographic image of the printed circuit board of the wearable EEG and ECG recording system. (<b>a</b>) View of all printed circuit boards (PCBs), in which the three rigid PCBs are connected by flexible PCBs. (<b>b</b>) Enlarged view of the top side of the PCBs and their component layouts. (<b>c</b>) Enlarged view of the bottom side of the PCBs and their component layouts.</p> "> Figure 7
<p>(<b>a</b>) The proposed wearable EEG and ECG system. (<b>b</b>) Photographic images of a subject wearing the system.</p> "> Figure 8
<p>The alpha wave test: (<b>a</b>) EEG waveform of the eyes-open and eyes-closed sessions, and (<b>b</b>) power spectra of the eyes-open and eyes-closed sessions.</p> "> Figure 9
<p>Comparison of the head ECG and the standard ECG. (<b>a</b>) Raw waveform of the head ECG and standard ECG. (<b>b</b>) Overlap of the head ECG (amplified 20 times) and the standard ECG. (<b>c</b>) R-peak detection of the head ECG and the standard ECG. (<b>d</b>) Comparison of the R–R interval from the head ECG and standard ECG.</p> "> Figure 10
<p>Mean values (standard error of mean, SEM) of fourteen features (S1 = Stroop test, R1 = rest1, S2 = mental arithmetic test, R2 = rest2).</p> "> Figure 11
<p>Box blots of features with significant differences between the stress and rest periods. (<b>a</b>) Alpha power asymmetry. (<b>b</b>) Heart rate variability (HRV) low-frequency power/high-frequency power (LF/HF). The boxes represent the 25th and 75th percentiles, the lines within the boxes represent the means, and the lines outside the boxes represent the most extreme data points not considered outliers. The plus symbol indicates outliers.</p> "> Figure 12
<p>Average ROC curves of the five-fold cross-validation for the support vector machine (SVM) classifiers using the EEG, HRV, and EEG and HRV features. The blue line represents the EEG model (features: nLAP, nRAP, APA, BPA), the green line represents the HRV model (features: mRR, LF, HF, LF/HF), and the red line represents the EEG and HRV model (features: nLAP, APA, HF, LF/HF).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Design
2.2. EEG and ECG Recording Experiment
2.3. Stress Experiments
2.4. Data Analysis
3. Results and Discussion
3.1. System Specifications
3.2. EEG Alpha Wave and ECG Comparison Results
3.3. Stress Assessment
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Crowley, O.V.; McKinley, P.S.; Burg, M.M.; Schwartz, J.E.; Ryff, C.D.; Weinstein, M.; Seeman, T.E.; Sloan, R.P. The interactive effect of change in perceived stress and trait anxiety on vagal recovery from cognitive challenge. Int. J. Psychophysiol. 2011, 82, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Kofman, O.; Meiran, N.; Greenberg, E.; Balas, M.; Cohen, H. Enhanced performance on executive functions associated with examination stress: Evidence from task-switching and Stroop paradigms. Cogn. Emot. 2006, 20, 577–595. [Google Scholar] [CrossRef]
- Segerstrom, S.C.; Miller, G.E. Psychological stress and the human immune system: A meta-analytic study of 30 years of inquiry. Psychol. Bull. 2004, 130, 601. [Google Scholar] [CrossRef]
- Steven Sauter, L.M.e.a. Stress at Work. (NIOSH), T.N.I.f.O.S.a.H., Ed. NIOSH. Available online: https://www.cdc.gov/niosh/docs/99-101/default.html (accessed on 27 April 2019).
- Pierce, C.M. Stress in the workplace. In Black Families in Crisis: The Middle Class; Brunner/Mazel: Philadelphia, PA, USA, 1988; pp. 27–34. [Google Scholar]
- Manning, M.R.; Jackson, C.N.; Fusilier, M.R. Occupational stress, social support, and the costs of health care. Acad. Manage. J. 1996, 39, 738–750. [Google Scholar] [PubMed]
- Sharma, N.; Gedeon, T. Objective measures, sensors and computational techniques for stress recognition and classification: A survey. Comput. Methods Programs Biomed. 2012, 108, 1287–1301. [Google Scholar] [CrossRef]
- Cohen, H.; Benjamin, J.; Geva, A.B.; Matar, M.A.; Kaplan, Z.; Kotler, M. Autonomic dysregulation in panic disorder and in post-traumatic stress disorder: Application of power spectrum analysis of heart rate variability at rest and in response to recollection of trauma or panic attacks. Psychiatry Res. 2000, 96, 1–13. [Google Scholar] [CrossRef]
- Hughes, J.W.; Stoney, C.M. Depressed mood is related to high-frequency heart rate variability during stressors. Psychosom. Med. 2000, 62, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Pan, R.L.-C.; Li, J.K.J. A Noninvasive Parametric Evaluation of Stress Effects on Global Cardiovascular Function. Cardiovasc. Eng. 2007, 7, 74–80. [Google Scholar] [CrossRef]
- Akselrod, S.; Gordon, D.; Ubel, F.A.; Shannon, D.C.; Berger, A.; Cohen, R.J. Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat-to-beat cardiovascular control. Science 1981, 213, 220–222. [Google Scholar] [CrossRef]
- Marques, A.H.; Silverman, M.N.; Sternberg, E.M. Evaluation of stress systems by applying noninvasive methodologies: Measurements of neuroimmune biomarkers in the sweat, heart rate variability and salivary cortisol. Neuroimmunomodulation 2010, 17, 205–208. [Google Scholar] [CrossRef]
- Visnovcova, Z.; Mestanik, M.; Javorka, M.; Mokra, D.; Gala, M.; Jurko, A.; Calkovska, A.; Tonhajzerova, I. Complexity and time asymmetry of heart rate variability are altered in acute mental stress. Physiol. Meas. 2014, 35, 1319–1334. [Google Scholar] [CrossRef]
- Castaldo, R.; Melillo, P.; Bracale, U.; Caserta, M.; Triassi, M.; Pecchia, L. Acute mental stress assessment via short term HRV analysis in healthy adults: A systematic review with meta-analysis. Biomed. Signal Process. Control 2015, 18, 370–377. [Google Scholar] [CrossRef] [Green Version]
- Taelman, J.; Vandeput, S.; Vlemincx, E.; Spaepen, A.; Van Huffel, S. Instantaneous changes in heart rate regulation due to mental load in simulated office work. Eur. J. Appl. Physiol. 2011, 111, 1497–1505. [Google Scholar] [CrossRef]
- Li, Z.; Snieder, H.; Su, S.; Ding, X.; Thayer, J.F.; Treiber, F.A.; Wang, X. A longitudinal study in youth of heart rate variability at rest and in response to stress. Int. J. Psychophysiol. 2009, 73, 212–217. [Google Scholar] [CrossRef] [Green Version]
- Traina, M.; Cataldo, A.; Galullo, F.; Russo, G. Effects of anxiety due to mental stress on heart rate variability in healthy subjects. Minerva Psichiatrica 2011, 52, 227–231. [Google Scholar]
- Papousek, I.; Nauschnegg, K.; Paechter, M.; Lackner, H.K.; Goswami, N.; Schulter, G. Trait and state positive affect and cardiovascular recovery from experimental academic stress. Biol. Psychol. 2010, 83, 108–115. [Google Scholar] [CrossRef]
- Tharion, E.; Parthasarathy, S.; Neelakantan, N. Short-term heart rate variability measures in students during examinations. Natl. Med. J. India 2009, 22, 63–66. [Google Scholar]
- Seo, S.-H.; Lee, J.-T. Stress and EEG. In ICHIT; InTech, 2010; Available online: https://www.intechopen.com/books/convergence-and-hybrid-information-technologies/stress-and-eeg (accessed on 27 April 2019).
- Alonso, J.; Romero, S.; Ballester, M.; Antonijoan, R.; Mañanas, M. Stress assessment based on EEG univariate features and functional connectivity measures. Physiol. Meas. 2015, 36, 1351. [Google Scholar] [CrossRef] [PubMed]
- Rabbi, A.F.; Zony, A.; de Leon, P.; Fazel-Rezai, R. Mental workload and task engagement evaluation based on changes in electroencephalogram. Biomed. Eng. Lett. 2012, 2, 139–146. [Google Scholar] [CrossRef]
- Tucker, D.M. Lateral brain function, emotion, and conceptualization. Psychol. Bull. 1981, 89, 19–46. [Google Scholar] [CrossRef] [PubMed]
- Davidson, R.J. Cerebral asymmetry and emotion: Conceptual and methodological conundrums. Cogn. Emot. 1993, 7, 115–138. [Google Scholar] [CrossRef]
- Davidson, R.J. What does the prefrontal cortex “do” in affect: Perspectives on frontal EEG asymmetry research. Biol. Psychol. 2004, 67, 219–234. [Google Scholar] [CrossRef]
- Lewis, R.S.; Weekes, N.Y.; Wang, T.H. The effect of a naturalistic stressor on frontal EEG asymmetry, stress, and health. Biol. Psychol. 2007, 75, 239–247. [Google Scholar] [CrossRef]
- Sulaiman, N.; Mohd Nasir, T.; Siti Armiza Mohd, A.; Noor Hayatee Abdul, H.; Lias, S.; Zunairah Haji, M. Stress features identification from EEG signals using EEG Asymmetry & Spectral Centroids techniques. In Proceedings of the 2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia, 30 November–2 December 2010; pp. 417–421. [Google Scholar]
- Hou, X.; Liu, Y.; Sourina, O.; Tan, Y.R.E.; Wang, L.; Mueller-Wittig, W. EEG Based Stress Monitoring. In Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, Kowloon, China, 9–12 October 2015; pp. 3110–3115. [Google Scholar]
- Lin, T.; John, L. Quantifying Mental Relaxation with EEG for use in Computer Games. In Proceedings of the International conference on internet computing, Las Vegas, NV, USA, 26–29 June 2006; pp. 409–415. [Google Scholar]
- Dharmawan, Z. Analysis of Computer Games Player Stress Level Using EEG Data. Master of Science Thesis Report, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands, 2007. [Google Scholar]
- Roh, T.; Hong, S.; Cho, H.; Yoo, H.-J. A 259.6 μW nonlinear HRV-EEG chaos processor with body channel communication interface for mental health monitoring. In Proceedings of the Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 19–23 February 2012; pp. 294–296. [Google Scholar]
- Looney, D.; Kidmose, P.; Park, C.; Ungstrup, M.; Rank, M.; Rosenkranz, K.; Mandic, D. The in-the-ear recording concept: User-centered and wearable brain monitoring. IEEE Pulse 2012, 3, 32–42. [Google Scholar] [CrossRef]
- Bleichner, M.G.; Debener, S. Concealed, Unobtrusive Ear-Centered EEG Acquisition: cEEGrids for Transparent EEG. Front. Hum. Neurosci. 2017, 11, 163. [Google Scholar] [CrossRef] [PubMed]
- Willmann, M.; Langlet, C.; Hainaut, J.-P.; Bolmont, B. The time course of autonomic parameters and muscle tension during recovery following a moderate cognitive stressor: Dependency on trait anxiety level. Int. J. Psychophysiol. 2012, 84, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Teixeira-Silva, F.; Prado, G.B.; Ribeiro, L.d.C.G.; Leite, J.R. The anxiogenic video-recorded Stroop Color–Word Test: Psychological and physiological alterations and effects of diazepam. Physiol. Behav. 2004, 82, 215–230. [Google Scholar] [CrossRef]
- Schneider, G.M.; Jacobs, D.W.; Gevirtz, R.N.; O’Connor, D.T. Cardiovascular haemodynamic response to repeated mental stress in normotensive subjects at genetic risk of hypertension: Evidence of enhanced reactivity, blunted adaptation, and delayed recovery. J. Hum. Hypertens. 2003, 17, 829. [Google Scholar] [CrossRef]
- Bansal, D.; Khan, M.; Salhan, A.K. A Review of Measurement and Analysis of Heart Rate Variability. In Proceedings of the 2009 International Conference on Computer and Automation Engineering, Bangkok, Thailand, 8–10 March 2009; pp. 243–246. [Google Scholar]
- Camm, A.J.; Malik, M.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 1996, 17, 354–381. [Google Scholar]
- Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 1985, 32, 230–236. [Google Scholar] [CrossRef]
- Katsis, C.D.; Katertsidis, N.; Ganiatsas, G.; Fotiadis, D.I. Toward emotion recognition in car-racing drivers: A biosignal processing approach. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2008, 38, 502–512. [Google Scholar] [CrossRef]
- Zhai, J.; Barreto, A. Stress Recognition Using Non-invasive Technology. In Proceedings of the FLAIRS Conference, Melbourne Beach, FL, USA, 11–13 May 2006; pp. 395–401. [Google Scholar]
- Ott, H.W. Partitioning and layout of a mixed-signal PCB. Print. Circuit Des. 2001, 18, 8–11. [Google Scholar]
- Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. Heart Rate Variability. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef] [Green Version]
- Hjortskov, N.; Rissén, D.; Blangsted, A.K.; Fallentin, N.; Lundberg, U.; Søgaard, K. The effect of mental stress on heart rate variability and blood pressure during computer work. Eur. J. Appl. Physiol. 2004, 92, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.A.; Khalilzadeh, M.A. Emotional Stress Recognition System Using EEG and Psychophysiological Signals: Using New Labelling Process of EEG Signals in Emotional Stress State. In Proceedings of the International Conference on Biomedical Engineering and Computer Science, Wuhan, China, 23–25 April 2010; pp. 1–6. [Google Scholar]
- Choi, J.; Ahmed, B.; Gutierrez-Osuna, R. Development and evaluation of an ambulatory stress monitor based on wearable sensors. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 279–286. [Google Scholar] [CrossRef] [PubMed]
Feature | Description | Unit | Equation |
---|---|---|---|
nLAP | Normalized left hemisphere alpha band power | % | |
nRAP | Normalized right hemisphere alpha band power | % | |
nLBP | Normalized left hemisphere beta band power | % | |
nRBP | Normalized right hemisphere beta band power | % | |
DPA | Delta band power asymmetry | - | |
TPA | Theta band power asymmetry | - | |
APA | Alpha band power asymmetry | - | |
BPA | Beta band power asymmetry | - | |
mRR | Mean of R–R interval | msec | |
SDRR | Standard deviation of R–R interval | msec | |
RMSSD | Root mean square difference of successive R–R interval | msec | |
nLF-HRV | Normalized low frequency power of HRV | % | |
nHF-HRV | Normalized high frequency power of HRV | % | |
LF/HF | The ratio between nLF-HRV and nHF-HRV | - |
Feature | Stroop Test (S1) | Rest (R1) | Arithmetic Test (S2) | Rest (R2) |
---|---|---|---|---|
nLAP | 15.29 (±4.19) | 12.22 (±3.64) | 14.14 (±3.53) | 13.21 (±3.22) |
nRAP | 14.11 (±3.63) | 11.85 (±3.60) | 12.88 (±3.00) | 12.47 (±3.16) |
nLBP | 27.37 (±9.11) | 21.62 (±9.09) | 22.61 (±7.63) | 20.42 (±8.53) |
nRBP | 25.60 (±9.83) | 20.88 (±8.42) | 21.43 (±7.71) | 19.50 (±9.47) |
DPA | 2.32 (±4.52) | 0.65 (±2.01) | 1.78 (±4.63) | 1.16 (±2.88) |
TPA | −0.81 (±3.84) | 0.76 (±3.47) | −1.80 (±2.85) | 0.59 (±2.55) |
APA | −5.87 (±2.33) 1,2 | −2.05 (±1.51) | −6.16 (±2.14) 1,2 | −3.11 (±1.90) |
BPA | −5.95 (±6.76) | −2.07 (±4.37) | −4.66 (±5.40) | −3.44 (±4.31) |
mRR | 733.16 (±109.41) | 719.31 (±116.85) | 712.37 (±97.87) | 735.24 (±100.15) |
SDRR | 74.74 (±58.37) | 77.48 (±38.97) | 68.93 (±49.41) | 75.20 (±47.89) |
RMSSD | 66.36 (±54.69) | 72.48 (±36.27) | 63.94 (±47.09) | 69.77 (±43.25) |
nLF-HRV | 10.89 (±3.35) | 10.03 (±2.88) | 10.38 (±2.25) | 9.59 (±1.92) |
nHF-HRV | 11.63 (±4.59) | 13.71 (±6.51) | 10.20 (±3.29) | 13.72 (±6.16) |
LF/HF | 97.15 (±14.26) 1,2 | 79.04 (±16.68) | 105.93 (±18.34) 1,2 | 76.95 (±18.72) |
Model | Sensitivity (%) | Specificity (%) | Accuracy (%) | AUC |
---|---|---|---|---|
EEG | 84.6 | 72.0 | 77.9 | 0.8354 |
HRV | 76.9 | 73.2 | 75.0 | 0.8164 |
EEG+HRV | 90.0 | 85.0 | 87.5 | 0.9563 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, J.W.; Ku, Y.; Kim, H.C. A Novel Wearable EEG and ECG Recording System for Stress Assessment. Sensors 2019, 19, 1991. https://doi.org/10.3390/s19091991
Ahn JW, Ku Y, Kim HC. A Novel Wearable EEG and ECG Recording System for Stress Assessment. Sensors. 2019; 19(9):1991. https://doi.org/10.3390/s19091991
Chicago/Turabian StyleAhn, Joong Woo, Yunseo Ku, and Hee Chan Kim. 2019. "A Novel Wearable EEG and ECG Recording System for Stress Assessment" Sensors 19, no. 9: 1991. https://doi.org/10.3390/s19091991
APA StyleAhn, J. W., Ku, Y., & Kim, H. C. (2019). A Novel Wearable EEG and ECG Recording System for Stress Assessment. Sensors, 19(9), 1991. https://doi.org/10.3390/s19091991