Spatiotemporal Variability of Asymmetric Daytime and Night-Time Warming and Its Effects on Vegetation in the Yellow River Basin from 1982 to 2015
<p>The altitude, weather stations, and vegetation types in the Yellow River Basin.</p> "> Figure 2
<p>Variations of mean <span class="html-italic">T<sub>max</sub></span> and <span class="html-italic">T<sub>min</sub></span> during the growing seasons from 1982 to 2015 in the Yellow River Basin.</p> "> Figure 3
<p>Air temperature trends in growing season across the Yellow River Basin over the period 1982–2015. (<b>a</b>) the slope of <span class="html-italic">T<sub>max</sub></span>; (<b>b</b>) the slope of <span class="html-italic">T<sub>min</sub></span>; (I: Longyangxia in the upper reaches; II: Longyangxia to Lanzhou; III: Lanzhou to Hekou town; IV: Longmen to Sanmenxia; V: Inflow zone; VI: Hekou town to Longmen area; VII: Longmen to Huayuankou; VIII: below Huayuankou in the lower reaches).</p> "> Figure 4
<p>Spatial patterns of the correlations between Normalized Difference Vegetation Index (NDVI) and <span class="html-italic">T<sub>max</sub></span> or <span class="html-italic">T<sub>min</sub></span> during the growing season (April–October) in the Yellow River Basin, 1982–2015. (<b>a</b>) Mapping of the partial correlation coefficients between NDVI and <span class="html-italic">T<sub>max</sub></span>, given that the corresponding <span class="html-italic">T<sub>min</sub></span> and precipitation are controlled for in the calculation. (<b>b</b>) Spatial distribution of significance level of the partial correlation coefficients between NDVI and <span class="html-italic">T<sub>max</sub></span>. (<b>c</b>) The partial correlation coefficients between NDVI and <span class="html-italic">T<sub>min</sub></span> by controlling <span class="html-italic">T<sub>max</sub></span> and precipitation. (<b>d</b>) Spatial distribution of partial correlation coefficients between NDVI and <span class="html-italic">T<sub>min</sub></span>.(I: Longyangxia in the upper reaches; II: Longyangxia to Lanzhou; III: Lanzhou to Hekou town; IV: Longmen to Sanmenxia; V: Inflow zone; VI: Hekou town to Longmen area; VII: Longmen to Huayuankou; VIII: below Huayuankou in the lower reaches).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Processing
2.1.1. Meteorological Data
2.1.2. Normalized Difference Vegetation Index (NDVI)
2.1.3. Vegetation Data
2.2. Methods
2.2.1. Trend Analyses and Mann–Kendall (M–K) Test
2.2.2. Partial Correlation Analysis
3. Results and Analysis
3.1. The Spatial and Temporal Patterns of Daytime and Night-Time Warming
3.2. Partial Correlation between NDVI and Daytime and Night-Time Warming
3.3. Partial Correlation between Different Vegetation NDVI and Daytime and Night-Time Warming
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Field, C.B.; Lobell, D.B.; Peters, H.A.; Chiariello, N.R. Feedbacks of terrestrial ecosystems to climate change. Annu. Rev. Environ. Resour. 2007, 32, 1–29. [Google Scholar] [CrossRef]
- Gonsamo, A.; Chen, J.M.; Lombardozzi, D. Global vegetation productivity response to climatic oscillations during the satellite era. Glob. Chang. Biol. 2016, 22, 3414–3426. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.L.; Tan, J.G.; Chen, A.; Fu, Y.H.; Ciais, P.; Liu, Q.; Janssens, I.A.; Vicca, S.; Zeng, Z.; Jeong, S.J.; et al. Leaf onset in the northern hemisphere triggered by day-time temperature. Nat. Commun. 2015, 6, 6911. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.C.; Piao, S.L.; Myneni, R.B.; Huang, M.T.; Zeng, Z.Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A. Greening of the Earth and its drivers. Nat. Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Screen, J.A. Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nat. Clim. Chang. 2014, 4, 577–582. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.S.; Piao, S.L.; Ciais, P.; Myneni, R.B.; Chen, A.P.; Chevallier, F.; Dolman, A.J.; Janssens, I.A.; Peñuelas, J.; Zhang, G.X. Asymmetric effects of day-time and night-time warming on Northern Hemisphere vegetation. Nature 2013, 501, 88–92. [Google Scholar] [CrossRef]
- Tan, J.; Piao, S.; Chen, A.; Zeng, Z.; Ciais, P.; Janssens, I.A.; Mao, J.; Myneni, R.B.; Peng, S.; Peñuelas, J.; et al. Seasonally different response of photosynthetic activity to day-time and night-time warming in the Northern Hemisphere. Glob. Chang. Biol. 2015, 21, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Alward, R.D.; Detling, J.K.; Milchunas, D.G. Grassland vegetation changes and nocturnal global warming. Science 1999, 283, 229–231. [Google Scholar] [CrossRef]
- Zhang, G.; Kang, Y.; Han, G.; Sakurai, K. Effect of climate change over the past half century on the distribution, extent and NPP of ecosystems of Inner Mongolia. Glob. Chang. Biol. 2015, 17, 377–389. [Google Scholar] [CrossRef]
- Ma, X.X.; Yan, Y.; Hong, J.T.; Lu, X.Y.; Wang, X.D. Impacts of warming on root biomass allocation in alpine steppe on the north Tibetan Plateau. J. Mt. Sci. 2017, 14, 1615–1623. [Google Scholar] [CrossRef]
- Zhang, Q. The Effects of Day and Night Warming on Water-Use Efficiency in a Typical Steppe in Northern China. Master’s Thesis, Henan University, Kaifeng, China, 2013. [Google Scholar]
- Zhao, J.; Liu, X.J.; Du, Z.Q. Effects of the asymmetric diurnal-warming on vegetation dynamics in Xinjiang. China Environ. Sci. 2017, 37, 2316–2321. [Google Scholar]
- Ju, H.; Velde, M.; Lin, E.; Xiong, W.; Li, Y. The impacts of climate change on agricultural production systems in China. Clim. Chang. 2013, 120, 313–324. [Google Scholar] [CrossRef]
- Xia, H.M.; Li, A.N.; Feng, G.; Li, Y.; Qin, Y.; Lei, G.; Cui, Y. The effects of asymmetric diurnal warming on vegetation growth of the Tibetan Plateau over the past three decades. Sustainability 2018, 10, 1103. [Google Scholar] [CrossRef]
- Piao, S.L.; Yin, G.D.; Tan, J.G.; Cheng, L.; Huang, M.T.; Li, Y.; Liu, R.G.; Mao, J.F.; Myneni, R.B.; Peng, S.S.; et al. Detection and attribution of vegetation greening trend in China over the last 30 years. Glob. Chang. Biol. 2015, 24, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.L.; Cui, M.; Chen, A.; Wang, X.; Ciais, P.; Liu, J.; Tang, Y. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agric. For. Meteorol. 2011, 151, 1599–1608. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Xia, H.M.; Li, A.N.; Zhao, W.; Bian, J.H.; Lei, G.B. Spatiotemporal variations of forest phenology in the Qinling zone based on remote sensing monitoring, 2001–2010. Prog. Geogr. 2015, 34, 1297–1305. [Google Scholar]
- Wan, S.Q.; Xia, J.Y.; Liu, W.X.; Niu, S.L. Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration. Ecology 2009, 90, 2700–2710. [Google Scholar] [CrossRef]
- Liang, C.L.; Yu, Q.Z.; Liu, Y.J.; Zhang, Z. Effects of air temperature circadian on the NDVI of Nansi Lake wetland vegetation. Trop. Geogr. 2015, 35, 422–426. [Google Scholar]
- He, J.J.; Zhang, P.Y.; Jing, W.L.; Yan, Y.H. Spatial Responses of Net Ecosystem Productivity of the Yellow River Basin under Diurnal Asymmetric Warming. Sustainability 2018, 10, 3646. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Z.M.; Yang, H.B.; Zhao, Y.; Li, Z.H.; Wu, J.P. Capability of Remotely Sensed Drought Indices for Representing the Spatio–Temporal Variations of the Meteorological Droughts in the Yellow River Basin. Remote Sens. 2018, 10, 1834. [Google Scholar] [CrossRef]
- Huang, S.Z.; Chang, J.X.; Leng, G.Y.; Huang, Q. Integrated index for drought assessment based on variable fuzzy set theory: A case study in the Yellow River basin, China Variability of temperature extremes in the Yellow River basin during 1961–2011. J. Hydrol. 2015, 527, 608–618. [Google Scholar] [CrossRef]
- Ma, L.Q.; Xia, H.M.; Sun, J.L.; Wang, H.; Feng, G.; Qin, F. Spatial-Temporal Variability of Hydrothermal Climate Conditions in the Yellow River Basin from 1957 to 2015. Atmosphere 2018, 9, 433. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, Y.; Ma, X.Y.; Ren, L.L.; Singh, V.P. Drought Analysis in the Yellow River Basin Based on a Short-Scalar Palmer Drought Severity Index. Water 2018, 10, 1526. [Google Scholar] [CrossRef]
- Wohlfart, C.; Liu, G.; Huang, C.; Kuenzer, C. A River Basin over the Course of Time: Multi-Temporal Analyses of Land Surface Dynamics in the Yellow River Basin (China) Based on Medium Resolution Remote Sensing Data. Remote Sens. 2016, 8, 186. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, T.; Xu, H.; Wang, Y. Potential Threats from Variations of Hydrological Parameters to the Yellow River and Pearl River Basins in China over the Next 30 Years. Water 2018, 10, 883. [Google Scholar] [CrossRef]
- Feng, J.M.; Wang, T.X.; Chang, W. Eco-Environmental Degradation in the Source Region of the Yellow River, Northeast Qinghai-Xizang Plateau. Environ. Monit. Assess. 2016, 122, 125–143. [Google Scholar] [CrossRef] [PubMed]
- China Meteorological Data Service Center. Hourly Observation Data from China Ground Weather Station. Available online: http://data.cma.cn/data/detail/DataCode/A.0012.0001.html (accessed on 20 November 2017).
- Wang, X.L.; Wen, Q.H.; Wu, Y. Penalized maximal t test for detecting undocumented mean change in climate data series. J. Appl. Meteorol. Climatol. 2007, 46, 916–931. [Google Scholar] [CrossRef]
- Wang, X.L. Accounting for autocorrelation in detecting mean-shifts in climate data series using the penalized maximal T or F test. J. Appl. Meteorol. Climatol. 2008, 47, 2423–2444. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, P.; Zhang, W.; Hu, F. Aspatial interpolation method for surface air temperature and its error analysis. Chin. J. Atmos. Sci. 2006, 30, 146–152. [Google Scholar]
- Boer, E.P.J.; de Beurs, K.M.; Hartkamp, A.D. Kriging and thin plate splines for mapping climate variables. Int. J. Appl. Earth Obs. Geoinf. 2001, 3, 146–154. [Google Scholar] [CrossRef]
- GLobal Land Cover Facility. Shuttle Radar Topography Mission (SRTM). Available online: http://www.glcf.umd.edu/data/srtm/ (accessed on 20 November 2017).
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Clim. 2005, 25, 1965–1978. [Google Scholar] [CrossRef] [Green Version]
- New, M.; Hulme, M.; Jones, P. Representing twentieth-century space-time climate varibility. Part I: Development of a 1961–90 mean monthly terrestial climatology. J. Clim. 1999, 12, 829–856. [Google Scholar] [CrossRef]
- Jarvis, C.H.; Stuart, N. A comparison among strategies for interpolating maximum and minimum daily air temperatures. Part II: the interaction between the number of guiding variables and the type of interpolation method. J. Appl. Meteorol. 2001, 40, 1075–1084. [Google Scholar] [CrossRef]
- Global Inventor Modeling and Mapping Studies, GIMMS. Available online: https://ecocast.arc.nasa.gov/data/pub/gimms (accessed on 20 November 2017).
- Holben, B.N. Characterization of maximum value composites from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Chen, Y.H.; Li, X.B.; Shi, P.J. Variation in NDVI driven by climate factors across China, 1983–1992. Acta Phytoecol. Sin. 2001, 25, 716–720. [Google Scholar]
- Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC). Resource and Environment Data Cloud Platform. Available online: http://www.resdc.cn (accessed on 22 November 2017).
- Zar, J.H. Significance testing of the Spearman rank correlation coefficient. J. Am. Stat. Assoc. 1972, 67, 578–580. [Google Scholar] [CrossRef]
- Mahajan, D.R.; Dodamani, B.M. Trend analysis of drought events over upper Krishna basin in Maharashtra. Aquat. Procedia 2015, 4, 1250–1257. [Google Scholar] [CrossRef]
- Kisi, O.; Ay, M. Comparison of Mann-Kendall and innovative trend method for water quality parameters of the Kizilirmak River, Turkey. J. Hydrol. 2014, 513, 362–375. [Google Scholar] [CrossRef]
- Cleophas, T.J.; Zwinderman, A.H. Partial Correlations. In Machine Learning in Medicine; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Beniston, M.; Diaz, H.F.; Bradley, R.S. Climatic change at high elevation sites: An overview. Clim. Chang. 1997, 36, 233–251. [Google Scholar] [CrossRef]
- Guo, D.L.; Wang, H.J. The significant climate warming in the northern Tibetan Plateau and its possible causes. Int. J. Clim. 2012, 32, 1775–1781. [Google Scholar] [CrossRef]
- Beniston, M.; Rebetez, M. Regional behavior of minimum temperatures in Switzerland for the period 1979–1993. Appl. Clim. 1996, 53, 231–243. [Google Scholar] [CrossRef]
- Griffiths, G.M.; Chambers, L.E.; Haylock, M.R. Change in mean temperature as a predictor of extreme temperature change in the Asia-Pacific region. Int. J. Clim. 2010, 25, 1301–1330. [Google Scholar] [CrossRef]
- You, Q.L.; Kang, S.C.; Aguila, E. Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961–2005. J. Geophys. Res. Atmos. 2008, 113, 1639–1647. [Google Scholar] [CrossRef]
- Davy, R.; Esau, I.; Chernokulsky, A.; Outten, S.; Zilitinkevich, S. Diurnal asymmetry to the observed global warming. Int. J. Clim. 2016, 37, 79–93. [Google Scholar] [CrossRef] [Green Version]
- Foote, K.C.; Scgaedke, M. Physiological characteristics of photosynthesis and respiration in stems of populus tremuloides michx. Plant Physiol. 1976, 58, 91–97. [Google Scholar] [CrossRef]
- Liu, Q.; Yan, C.R.; Zhang, Y.Q.; Yang, J.Y.; Zhang, S.H. Variation of precipitation and temperature in Yellow River Basin during the last 50 years. Chin. J. Agrometeorol. 2012, 33, 475–480. [Google Scholar] [CrossRef]
- Xia, H.; Zhao, W.; Li, A.; Bian, J.; Zhang, Z. Subpixel Inundation Mapping Using Landsat-8 OLI and UAV Data for a Wetland Region on the Zoige Plateau, China. Remote Sens. 2017, 9, 31. [Google Scholar] [CrossRef]
- Peng, S.B.; Huang, J.L.; Sheehy, J.E.; Laza, R.C.; Visperas, R.M.; Zhong, X.H.; Centeno, G.S.; Khush, G.S.; Cassman, K.G. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. USA 2004, 101, 9971–9975. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B. Changes in diurnal temperature range and national cereal yields. Agric. Meteorol. 2007, 145, 229–238. [Google Scholar] [CrossRef]
- Atkin, O.K.; Turnbull, M.H.; Zaragoza-Castells, J.; Fyllas, N.M.; Lloyd, J.; Meir, P.; Griffin, K.L. Light inhibition of leaf respiration as soil fertility declines along a post-glacial chronosequence in New Zealand, an analysis using the Kok method. Plant Soil 2013, 367, 163–182. [Google Scholar] [CrossRef]
- Hobbie, S.E. Temperature and plant species control over litter decomposition in Alaskan Tundra. Ecol. Monogr. 1996, 66, 503–522. [Google Scholar] [CrossRef]
Vegetation Types | Tmax | Tmin | Area (km2) |
---|---|---|---|
coniferous forest | 0.142NS | 0.567** | 304 |
cultivated plants | 0.599** | 0.528** | 2864 |
broadleaf forest | 0.289NS | –0.217NS | 402 |
shrub | 0.557** | 0.657** | 686 |
desert | 0.418* | 0.537** | 397 |
Grassland and meadow | –0.307NS | 0.661** | 3434 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Xia, H.; Meng, Q. Spatiotemporal Variability of Asymmetric Daytime and Night-Time Warming and Its Effects on Vegetation in the Yellow River Basin from 1982 to 2015. Sensors 2019, 19, 1832. https://doi.org/10.3390/s19081832
Ma L, Xia H, Meng Q. Spatiotemporal Variability of Asymmetric Daytime and Night-Time Warming and Its Effects on Vegetation in the Yellow River Basin from 1982 to 2015. Sensors. 2019; 19(8):1832. https://doi.org/10.3390/s19081832
Chicago/Turabian StyleMa, Liqun, Haoming Xia, and Qingmin Meng. 2019. "Spatiotemporal Variability of Asymmetric Daytime and Night-Time Warming and Its Effects on Vegetation in the Yellow River Basin from 1982 to 2015" Sensors 19, no. 8: 1832. https://doi.org/10.3390/s19081832
APA StyleMa, L., Xia, H., & Meng, Q. (2019). Spatiotemporal Variability of Asymmetric Daytime and Night-Time Warming and Its Effects on Vegetation in the Yellow River Basin from 1982 to 2015. Sensors, 19(8), 1832. https://doi.org/10.3390/s19081832