Stress Monitoring on GFRP Anchors Based on Fiber Bragg Grating Sensors
<p>Fiber line with bare FBG sensors.</p> "> Figure 2
<p>Schematic diagram of instrumented glass fiber-reinforced polymer (GFRP) anchor.</p> "> Figure 3
<p>Installation procedure for GFRP anchors: (<b>a</b>) drilling hole; (<b>b</b>) centering; (<b>c</b>) installing; and (<b>d</b>) pouring cement mortar.</p> "> Figure 4
<p>Schematic diagram of pulling test.</p> "> Figure 5
<p>Pulling test set-up in field: (<b>a</b>) steel bar fixed with GFRP anchors; (<b>b</b>) loading device installation; (<b>c</b>) wedding circular steel plates; and (<b>d</b>) pulling-out.</p> "> Figure 6
<p>Axial forces versus depth: (<b>a</b>) GFRP-1 and (<b>b</b>) GFRP-2.</p> "> Figure 7
<p>Shear stress versus depth: (<b>a</b>) GFRP-1 and (<b>b</b>) GFRP-2.</p> ">
Abstract
:1. Introduction
2. Field Test Procedures
2.1. Implantation of Bare FBG Sensors into GFRP Anchors
2.2. Installation of GFRP Anchors
2.3. Pullout Testing Setup
3. Test Results and Discussion
3.1. Axial Forces Along Depth
3.2. Average Shear Stress Along Depth
4. Conclusions
- The embedded FBG sensing technology was proven to be feasible in measuring the stress distribution of GFRP anchors during pulling. Optical fiber with multiplexed bare FBG sensors could be fused together well with GFRP materials in the process of extrusion molding to from smart monitoring system.
- For the GFRP anchor system, the anchor would reach failure when the shear stresses near GFRP–grout interface exceeded the interlaminar shear strength, as they are anisotropic and more extensible. A critical depth exists for the GFRP anchor system. Therefore, the ultimate capacity of these structures will be unaffected by their depth if the length is greater than this critical value.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chaallal, O.; Benmokrane, B. Physical and mechanical performance of an innovative glass-fiber-reinforced plastic rod for concrete and grouted anchorages. Can. J. Civ. Eng. 1993, 20, 254–268. [Google Scholar] [CrossRef]
- Saadatmanesh, H.; Ehsani, M.R. Application of fiber-composites in Civil Engineering. In Proceedings of the Sessions Related to Structural Materials at Structures Congress’ 89, Reston, Virginia, USA, 1–5 May 1989; ASCE: Reston, VA, USA, 1989. [Google Scholar]
- Correia, J.R. GFRP Pultruded Profiles in Civil Engineering: Hybrid Solutions, Bonded Connections and Fire Behavior. Ph.D. Thesis, Civil Engineering, Instituto Superior, Technical University of Lisbon, Lisbon, Portugal, 2008. [Google Scholar]
- Gonilha, J.A.; Correia, J.R.; Branco, F.A. Creep response of GFRP-concrete hybrid structures: Application to a footbridge prototype. Compos. Part B Eng. 2013, 53, 193–206. [Google Scholar] [CrossRef]
- Nye, T.K.; Pantelides, C.P.; Burningham, C.A. Unidirectional GFRP composite connections between precast concrete wall panels under simulated seismic loads. Compos. Struct. 2018, 203, 624–635. [Google Scholar] [CrossRef]
- Carvelli, V.; Fava, G.; Pisani, M.A. Anchor system for tension testing of large diameter GFRP bars. J. Compos. Constr. 2009, 13, 344–349. [Google Scholar] [CrossRef]
- Benmokrane, B.; Masmoudi, R. Flexural response of concrete beams reinforced with FRP reinforcing bars. Struct. J. 1996, 93, 46–55. [Google Scholar]
- Carozzi, F.G.; Poggi, C.; Bertolesi, E.; Milani, G. Ancient masonry arches and vaults strengthened with TRM, SRG and FRP composites: Experimental evaluation. Compos. Struct. 2018, 187, 466–480. [Google Scholar] [CrossRef]
- Ashford, S.A.; Jakrapiyanun, W. Drivability of glass FRP composite piling. J. Compos. Constr. 2001, 5, 58–60. [Google Scholar] [CrossRef]
- Ozkal, F.M.; Polat, M.; Yagan, M.; Ozturk, M.O. Mechanical properties and bond strength degradation of GFRP and steel rebars at elevated temperatures. Constr. Build. Mater. 2018, 184, 45–57. [Google Scholar] [CrossRef]
- Kou, H.L.; Guo, W.; Zhang, M.Y. Pullout performance of GFRP anti-floating anchor in weathered soil. Tunn. Undergr. Space Technol. 2015, 49, 408–416. [Google Scholar] [CrossRef]
- Tennyson, R.C.; Coroy, T.; Duck, G.; Manuelpillai, G.; Mulvihill, P.; Cooper, D.J.; Jalali, S.J. Fibre optic sensors in civil engineering structures. Can. J. Civ. Eng. 2000, 27, 880–889. [Google Scholar] [CrossRef]
- Li, J.; Correia, R.; Chehura, E.; Staines, S.; James, S.W.; Tatam, R.P. A fibre bragg grating-based inclinometer system for ground movement measurement. In Proceedings of the Fourth European Workshop on Optical Fibre Sensors, International Society for Optics and Photonics, Porto, Portugal, 8 September 2010; Volume 7653, p. 765314. [Google Scholar]
- Yin, J.H.; Zhu, H.H.; Jin, W. Monitoring of soil nailed slopes and dams using innovative technologies. In Proceedings of the 10th International Symposium on Landslides and Engineered Slopes, Xi’an, China, 30 June–4 July 2008; Taylor and Francis: Abingdon, UK, 2008. [Google Scholar]
- Zhang, C.C.; Zhu, H.H.; Xu, Q.; Shi, B.; Mei, G.X. Time-dependent pullout behavior of glass fiber reinforced polymer (GFRP) soil nail in sand. Can. Geotech. J. 2014, 52, 1–11. [Google Scholar] [CrossRef]
- Hong, C.Y.; Yin, J.H.; Zhou, W.H.; Pei, H.F. Analytical study on progressive pullout behavior of a soil nail. J. Geotech. Geoenviron. Eng. 2011, 138, 500–507. [Google Scholar] [CrossRef]
- Schilder, C.; Kohlhoff, H.; Hofmann, D.; Basedau, F.; Habel, W.R.; Baebler, M.; Herten, M. Static and dynamic pile testing of reinforced concrete piles with structure integrated fibre optic strain sensors. In Proceedings of the Fifth European Workshop on Optical Fibre Sensors, International Society for Optics and Photonics, Krakow, Poland, 20 May 2013; Volume 8794, p. 879447. [Google Scholar]
- Lee, W.; Lee, W.J.; Lee, S.B.; Salgado, R. Measurement of pile load transfer using the Fiber Bragg Grating sensor system. Can. Geotech. J. 2004, 41, 1222–1232. [Google Scholar] [CrossRef]
- Kong, X.; Cai, C.S.; Hou, S. Scour effect on a single pile and development of corresponding scour monitoring methods. Smart Mater. Struct. 2013, 22, 055011. [Google Scholar] [CrossRef]
- Wang, H.L.; Peng, L.; Zhao, Z.G.; Li, Y.N.; Li, C.; Peng, Q.J.; Wang, D.D. On the application of fiber Bragg Grating strain piles for monitoring the slope of mountain substations. In Proceedings of the 2nd International Conference of Structural Health Monitoring and Integrity Management (ICSHMIM 2014), Nanjing, China, 24–26 September 2014; CRC Press: Boca Raton, FL, USA, 2015; pp. 379–384. [Google Scholar]
- Zhu, H.H.; Yin, J.H.; Jin, W.; Zhou, W.H. Soil nail monitoring using Fiber Bragg Grating sensors during pullout tests. In Proceedings of the Joint 60th Canadian Geotechnical and 8th IAH-CNC Conferences, Ottawa, ON, Canada, 21–24 October 2007; pp. 821–828. [Google Scholar]
- Zhu, H.H.; Yin, J.H.; Yeung, A.T.; Jin, W. Field pullout testing and performance evaluation of GFRP soil nails. J. Geotech. Geoenviron. Eng. 2010, 137, 633–642. [Google Scholar] [CrossRef]
- Hong, C.Y.; Yin, J.H.; Jin, W.; Wang, C.; Zhou, W.H.; Zhu, H.H. Comparative study on the elongation measurement of a soil nail using optical lower coherence interferometry method and FBG method. Adv. Struct. Eng. 2010, 13, 309–319. [Google Scholar] [CrossRef]
- Pei, H.; Yin, J.; Zhu, H.; Hong, C. Performance monitoring of a glass fiber-reinforced polymer bar soil nail during laboratory pullout test using FBG sensing technology. Int. J. Geomech. 2012, 13, 467–472. [Google Scholar] [CrossRef]
- Li, G.W.; Pei, H.F.; Hong, C.Y. Study on the stress relaxation behavior of large diameter B-GFRP bars using fbg sensing technology. Int. J. Distrib. Sens. Netw. 2013, 9, 201767. [Google Scholar]
- Jin, Q.P.; Zheng, Z.J.; Dou, B.Q.; Lei, X.W. FBG Sensor Application for GFRP Soil Nailing Pull-Out Test. Appl. Mech. Mater. 2014, 477, 539–542. [Google Scholar] [CrossRef]
- ASTM D4435-13e1, Standard Test Method for Rock Bolt Anchor Pull Test; ASTM International: West Conshohocken, PA, USA, 2013; Available online: www.astm.org (accessed on 27 March 2019).
- Ansari, F.; Libo, Y. Mechanics of bond and interface shear transfer in optical fiber sensors. J. Eng. Mech. 1998, 124, 385–394. [Google Scholar] [CrossRef]
- Won, J.P.; Park, C.G.; Kim, H.H.; Lee, S.W.; Jang, C.I. Effect of fibers on the bonds between FRP reinforcing bars and high-strength concrete. Compos. Part B Eng. 2008, 39, 747–755. [Google Scholar] [CrossRef]
- Sawicki, A. Mechanics of Reinforced Soil; Balkema: Rotterdam, The Netherlands, 2000. [Google Scholar]
FBG Number | No. 1 | No. 2 | No. 3 | No. 4 | No. 5 | No. 6 | No. 7 |
---|---|---|---|---|---|---|---|
Initial Wavelength (nm) | 1517.17 | 1519.87 | 1525.42 | 1530.01 | 1534.98 | 1539.84 | 1544.55 |
Distance from Ground Level (m) | 0.5 | 1.3 | 2.1 | 2.9 | 3.7 | 4.5 | 5.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kou, H.-L.; Li, W.; Zhang, W.-C.; Zhou, Y.; Zhou, X.-L. Stress Monitoring on GFRP Anchors Based on Fiber Bragg Grating Sensors. Sensors 2019, 19, 1507. https://doi.org/10.3390/s19071507
Kou H-L, Li W, Zhang W-C, Zhou Y, Zhou X-L. Stress Monitoring on GFRP Anchors Based on Fiber Bragg Grating Sensors. Sensors. 2019; 19(7):1507. https://doi.org/10.3390/s19071507
Chicago/Turabian StyleKou, Hai-Lei, Wang Li, Wang-Chun Zhang, Yuan Zhou, and Xiao-Long Zhou. 2019. "Stress Monitoring on GFRP Anchors Based on Fiber Bragg Grating Sensors" Sensors 19, no. 7: 1507. https://doi.org/10.3390/s19071507
APA StyleKou, H. -L., Li, W., Zhang, W. -C., Zhou, Y., & Zhou, X. -L. (2019). Stress Monitoring on GFRP Anchors Based on Fiber Bragg Grating Sensors. Sensors, 19(7), 1507. https://doi.org/10.3390/s19071507