Measuring Mechanism and Applications of Polymer-Based Flexible Sensors
<p>Polymer-based piezo-resistive flexible sensor. (<b>a</b>) Micro-structured film. (<b>b</b>) Sensor. (<b>c</b>) Theoretical diagram.</p> "> Figure 2
<p>Piezo-resistive properties of different thickness and microstructure arrays. (<b>a</b>) Piezo-resistive properties of different thicknesses. (<b>b</b>) Piezo-resistive properties of different microstructures.</p> "> Figure 3
<p>Schematic diagram of piezo-resistive properties of polymer-based flexible sensor.</p> "> Figure 4
<p>Equivalent circuit diagrams of resistance change of polymer-based flexible sensor. (<b>a</b>) Initial state. (<b>b</b>)Pressed state.</p> "> Figure 5
<p>Polymer-based flexible sensor signal acquisition and processing flow chart.</p> "> Figure 6
<p>Shape and structure dimension of the measured component. (<b>a</b>) Outline. (<b>b</b>) Two-dimensional section view.</p> "> Figure 7
<p>The installation and working diagram of sensor and spring. (<b>a</b>) Assembly. (<b>b</b>) Spring deformation diagram. (<b>c</b>) Piezo-resistive characteristics.</p> "> Figure 8
<p>Overall diagram of the testing device.</p> "> Figure 9
<p>Resistance change diagrams for static extreme load. (<b>a</b>) Resistance change diagram at 10kN. (<b>b</b>) Resistance change diagram at 60kN.</p> "> Figure 10
<p>Polymer-based flexible sensor hysteresis characteristic curve.</p> "> Figure 11
<p>Waveform diagram of Sensor resistance signal and periodic force with time.</p> "> Figure 12
<p>Schematic diagram of peak resistance in continuous cycle under dynamic load. (<b>a</b>) Resistance change diagram at 10kN. (<b>b</b>) Resistance change diagram at 60kN.</p> ">
Abstract
:1. Introduction
2. Structural Design and Measuring Mechanism of Polymer-Based Flexible Sensors
2.1. Structural Design of Polymer-Based Flexible Sensors
2.2. Structure Design of Sensing Film
2.3. Measuring Mechanism of Polymer-Based Flexible Sensors
3. Signal Acquisition and Processing System of Flexible Sensors
4. Experimental Study of Polymer-Based Flexible Sensors under Periodic Alternating Load
4.1. The Loaded State of the Measured Component
4.2. Experimental Equipment
4.3. Results and Analysis
4.3.1. Static Force Analysis
4.3.2. Dynamic Force Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Jackman, J.A.; Tan, E.-L.; Park, J.H.; Potroz, M.G.; Hwang, E.T.; Cho, N.-J. High-performance, flexible electronic skin sensor incorporating natural microcapsule actuators. Nano Energy 2017, 36, 38–45. [Google Scholar] [CrossRef]
- Hung, K.; Lee, C.C.; Choy, S.-O. Ubiquitous Health Monitoring: Integration of Wearable Sensors, Novel Sensing Techniques, and Body Sensor Networks. Mob. Health 2015, 5, 319–342. [Google Scholar]
- Lou, Z.; Chen, S.; Wang, L.; Shi, R.; Li, L.; Jiang, K.; Chen, D.; Shen, G. Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics. Nano Energy 2017, 38, 28–35. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, J.; Wang, L. Research on a Flexible Humidity Sensor Based on LCP Substrate. Chin. J. Sens. Actuators 2017, 30, 1478–1482. [Google Scholar]
- Kwak, Y.H.; Kim, W.; Park, K.B.; Kim, K.; Seo, S. Flexible heartbeat sensor for wearable device. Biosens. Bioelectron. 2017, 94, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhang, X.; Fang, P. Flexible film-transducers based on polypropylene piezoelectrets: Fabrication, properties, and applications in wearable devices. Sens. Actuators A Phys. 2017, 256, 35–42. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, Y.; Yang, Z.; Shen, J.; Cabrera, E.; Lertola, M.J.; Yang, W.; Zhang, D.; Benatar, A.; Castro, J.M.; et al. Highly stretchable and ultrathin nanopaper composites for epidermal strain sensors. Nanotechnology 2018, 29, 355304. [Google Scholar] [CrossRef] [PubMed]
- Su, P.G.; Tseng, J.Y.; Huang, Y.C.; Pan, H.H.; Li, P.C. Novel fully transparent and flexible humidity sensor. Sens. Actuators B Chem. 2011, 137, 496–500. [Google Scholar] [CrossRef]
- Islam, T.; Mahboob, M.R.; Khan, S.A. A Simple MOX Vapor Sensor on Polyimide Substrate for Measuring Humidity in ppm Level. IEEE Sens. J. 2015, 15, 3004–3013. [Google Scholar] [CrossRef]
- Lee, C.Y.; Hsieh, W.J.; Wu, G.W. Embedded flexible micro-sensors in MEA for measuring temperature and humidity in a micro-fuel cell. J. Power Sources 2008, 181, 237–243. [Google Scholar] [CrossRef]
- Lee, J.S.; Shin, K.Y.; Cheong, O.J.; Jim, J.H.; Jang, J. Highly Sensitive and Multifunctional Tactile Sensor Using Free-standing ZnO/PVDF Thin Film with Graphene Electrodes for Pressure and Temperature Monitoring. Sci. Rep. 2015, 5, 7887. [Google Scholar] [CrossRef] [PubMed]
- Baek, J.-Y.; An, J.-H.; Choi, J.-M.; Park, K.-S.; Lee, S.-H. Flexible polymeric dry electrodes for the long-term monitoring of ECG. Sens. Actuators. A Phys. 2008, 143, 423–429. [Google Scholar] [CrossRef]
- Ruan, X.; Chai, R.; Zhang, X.; Cai, A. The Preparation and Experiment of a Flexible ArrayPressureSensor Based on CNTs/PDMS Composites. Chin. J. Sens. Actuators 2018, 31, 1505–1510. (In Chinese) [Google Scholar]
- Gao, X.; Huang, Y.; Liu, Y.; Kormakov, S.; Zheng, X.; Wu, D.; Wu, D. Improved electrical conductivity of PDMS/SCF composite sheets with bolting cloth prepared by a spatial confining forced network assembly method. RSC Adv. 2017, 7, 14761–14768. [Google Scholar] [CrossRef]
- Wu, D.; Gao, X.; Sun, J.; Wu, D.; Liu, Y.; Kormakov, S.; Zheng, X.; Wu, L.; Huang, Y.; Guo, Z. Spatial Confining Forced Network-Assembly for preparation of high-performance conductive polymeric composites. Compos. Part A Appl. Sci. Manuf. 2017, 102, 88–95. [Google Scholar] [CrossRef]
- Kormakov, S.; He, X.; Huang, Y.; Liu, Y.; Sun, J.; Zheng, X.; Skopincev, I.; Gao, X.; Wu, D. A mathematical model for predicting conductivity of polymer composites with a forced assembly network obtained by SCFNA method. Polym. Compos. 2018. [Google Scholar] [CrossRef]
- Sun, J.; Zhuang, J.; Jiang, H.; Huang, Y.; Zheng, X.; Liu, Y.; Wu, D. Thermal dissipation performance of metal-polymer composite heat exchanger with V-shape microgrooves: A numerical and experimental study. Appl. Therm. Eng. 2017, 121, 492–500. [Google Scholar] [CrossRef]
- Zhuang, J.; Hu, W.; Fan, Y.; Sun, J.; He, X.; Xu, H.; Huang, Y.; Wu, D. Fabrication and testing of metal/polymer microstructure heat exchangers based on micro embossed molding method. Microsyst. Technol. 2019, 25, 381–388. [Google Scholar] [CrossRef]
- Sun, J.; Wu, D.; Liu, Y.; Dai, L.; Jiang, C. Numerical simulation and experimental study of filling process of micro prism by isothermal hot embossing in solid-like state. Adv. Polym. Technol. 2017, 37. [Google Scholar] [CrossRef]
- Li, R.; Wu, D.; Wang, Q.; Liu, Y.; Zheng, X.; Sun, J. Analysis of isothermal micro-hot embossing in the solid-like state based on molecular dynamics simulations. J. Beijing Univ. Chem. Technol. 2018, 45, 36–42. (In Chinese) [Google Scholar]
- Xiao, L.; Guo, L.; Zhang, L. Design of Flexible Sensor Array Based on Strain Gauge Piezoresistive Effect. Instrum. Tech. Sens. 2017, 7, 4–6. (In Chinese) [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Xu, H.; Huang, Y.; Sun, J.; Wu, D.; Gao, X.; Zhang, Y. Measuring Mechanism and Applications of Polymer-Based Flexible Sensors. Sensors 2019, 19, 1403. https://doi.org/10.3390/s19061403
Yang Z, Xu H, Huang Y, Sun J, Wu D, Gao X, Zhang Y. Measuring Mechanism and Applications of Polymer-Based Flexible Sensors. Sensors. 2019; 19(6):1403. https://doi.org/10.3390/s19061403
Chicago/Turabian StyleYang, Zewen, Hong Xu, Yao Huang, Jingyao Sun, Daming Wu, Xiaolong Gao, and Yajun Zhang. 2019. "Measuring Mechanism and Applications of Polymer-Based Flexible Sensors" Sensors 19, no. 6: 1403. https://doi.org/10.3390/s19061403
APA StyleYang, Z., Xu, H., Huang, Y., Sun, J., Wu, D., Gao, X., & Zhang, Y. (2019). Measuring Mechanism and Applications of Polymer-Based Flexible Sensors. Sensors, 19(6), 1403. https://doi.org/10.3390/s19061403