Development of a UV Index Sensor-Based Portable Measurement Device with the EUVB Ratio of Natural Light
<p>Current condition of the monthly erythemally weighted UV radiation (EUV) daily cycle (2017–2018; Cheonan, Chungcheongnam-do).</p> "> Figure 2
<p>Monthly/hourly erythemally weighted UVB (EUVB) ratio index graph (<b>a</b>) and the average (<b>b</b>).</p> "> Figure 3
<p>Portable measurement device and smartphone application. UVI: UV index; MCU: micro controller unit; BLE: Bluetooth Low Energy.</p> "> Figure 4
<p>Circuit diagram of the portable measurement device. DC: Data/Command; CS: Chip Select.</p> "> Figure 5
<p>The main process flow of the firmware.</p> "> Figure 6
<p>Transmission and reception protocol between the smartphone application and the device. DEV. ID: device serial number; CHK SUM: checksum.</p> "> Figure 7
<p>Smartphone application service UI (User Interface).</p> "> Figure 8
<p>EUV graphs before and after the application of the compensation equation.</p> "> Figure 9
<p>Graphs of the measurement results<b>.</b></p> ">
Abstract
:1. Introduction
2. Methods: Monthly/Hourly EUVB Ratio of Natural Light
3. Methods: UVI Sensor-Based Portable Device
3.1. Hardware Design and Implementation
3.2. Firmware Design and Implementation
3.3. UV Information Service
4. Results: Correction and Evaluation
4.1. Correction Equation Creation Test
4.2. EUVB Measurement Performance Evaluation
5. Conclusion and Future Research
Author Contributions
Funding
Conflicts of Interest
References
- Diffey, B.L. Sources and measurement of ultraviolet radiation. Methods 2002, 28, 4–13. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Global solar UV Index: A practical guide. Available online: https://apps.who.int/iris/bitstream/handle/10665/42459/9241590076.pdf?sequence=1&isAllowed=y (accessed on 24 December 2018).
- Lee, K.T.; Lee, B.Y.; Won, Y.I.; Jee, J.B.; Lee, W.H.; Kim, Y.J. Radiative Properties at King Sejong Station in West Antarctica with the Radiative Transfer Model: A Surface UV-A and Erythemal UV-B Radiation Changes. Ocean Polar Res. 2003, 25, 9–20. [Google Scholar] [CrossRef]
- Kwak, M. K.; Kim, J. H. The radiative characteristics of EUV-B over the Korean peninsula and exposure time for synthesizing adequate vitamin D. Atmosphere 2011, 21, 123–130. [Google Scholar]
- Ohnishi, Y.; Tajima, S.; Akiyama, M.; Ishibashi, A.; Kobayashi, R.; Horii, I. Expression of elastin-related proteins and matrix metalloproteinases in actinic elastosis of sun-damaged skin. Arch. Dermatol. Res. 2000, 292, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Sola, Y.; Lorente, J. Contribution of UVA irradiance to the erythema and photoaging effects in solar and sunbed exposures. J. Photochem. Photobiol. B Biol. 2015, 143, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Kim, O.K.; Nam, D.E.; Lee, M.J.; Kang, N.; Lim, J.Y.; Lee, J. Protective effects of green tea seed extract against UVB-irradiated human skin fibroblasts. J. Korean Soc. Food Sci. Nutr. 2014, 43, 1–8. [Google Scholar] [CrossRef]
- Biniek, K.; Levi, K.; Dauskardt, R.H. Solar UV radiation reduces the barrier function of human skin. Proc. Natl. Acad. Sci. USA 2012, 201206851. [Google Scholar] [CrossRef] [PubMed]
- Dayan, A.D. Solar and Ultraviolet Radiation. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. J. Clin. Pathol. 1993, 46, 880. [Google Scholar] [CrossRef]
- Holick, M.F. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am. J. Clin. Nutr. 2004, 80, 1678S–1688S. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Sunlight “D” ilemma: Risk of skin cancer or bone disease and muscle weakness. Lancet 2001, 357, 4–6. [Google Scholar] [CrossRef]
- UV radiation monitoring: UV index and UV dose. Available online: http://www.temis.nl/uvradiation/info/uvindex.html (accessed on 24 December 2018).
- GAW: Total UV Index. Korea Global Atmosphere Watch Center. Available online: Http://www.climate.go.kr/home/09_monitoring/index.php/UV (accessed on 24 December 2018).
- Miles, A.; Waller, J.; Hiom, S.; Swanston, D. SunSmart? Skin cancer knowledge and preventive behaviour in a British population representative sample. Health Educ. Res. 2005, 20, 579–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.S.; Oh, S.T.; Lim, J.H. Development of local area alert system against particulate matters and ultraviolet rays based on open IoT platform with P2P. Peer-to-Peer Networking Appl. 2018, 11, 1240–1251. [Google Scholar] [CrossRef]
- Heo, S.K.; Hwang, H.S.; Jeong, Y.; Na, K. Skin protection efficacy from UV irradiation and skin penetration property of polysaccharide-benzophenone conjugates as a sunscreen agent. Carbohydr. Polym. 2018, 195, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Oh, S.T.; Lim, J.H. Development of Portable Spectrometer supporting, Automatic Control of Integration Time. Res. J. Pharm. Technol. 2018, 11, 4619–4626. [Google Scholar] [CrossRef]
- Amini, N.; Matthews, J.E.; Dabiri, F.; Vahdatpour, A.; Noshadi, H.; Sarrafzadeh, M. A Wireless Embedded Device for Personalized Ultraviolet Monitoring. Biodevices 2009, 9, 200–205. [Google Scholar]
- Tsantarliotis, P.; Tsipouras, M.G.; Giannakeas, N. Personalized UV Radiation Risk Monitoring Using Wearable Devices and Fuzzy Modeling. Inventions 2018, 3, 26. [Google Scholar] [CrossRef]
- Fahrni, T.; Kuhn, M.; Sommer, P.; Wattenhofer, R.; Welten, S. Sundroid: Solar radiation awareness with smartphones. In Proceedings of the 13th International Conference on Ubiquitous Computing, Beijing, China, 17–21 September 2011; pp. 365–374. [Google Scholar]
- McKenzie, R.; Blumthaler, M.; Diaz, S.; Fioletov, V.; Herman, J.; Seckmeyer, G.; Smedley, A.; Webb, A. Rationalizing Nomenclature for UV Doses and Effects on Humans; CIE 209:2014; WMO: Geneva, Switzerland, 2014. [Google Scholar]
- Datasheet of TOCON_E2: SiC based UV-Index photodetector with integrated amplifier. Sglux. Available online: http://download.sglux.de/tocons/TOCON_E2.pdf (accessed on 10 April 2018).
- Kim, K.-M. Design of Lighting System to support Vitamin D Synthesis using Natural Light measurement Data. Master’s Thesis, Kongju National University, Cheonan, Korea, 2017. [Google Scholar]
- Fitzpatrick, T.B. The validity and practicality of sun-reactive skin types I through VI. Arch. Dermatol. 1988, 124, 869–871. [Google Scholar] [CrossRef] [PubMed]
- Hettiaratchy, S.; Papini, R. ABC of burns: Initial management of a major burn: II—Assessment and resuscitation. BMJ Br. Med. J. 2004, 329, 101. [Google Scholar] [CrossRef] [PubMed]
- MacLaughlin, J.; Holick, M.F. Aging decreases the capacity of human skin to produce vitamin D3. The J. Clin. Invest. 1985, 76, 1536–1538. [Google Scholar] [CrossRef] [PubMed]
Type | Model Name | Details |
---|---|---|
UVI sensor | TOCON E2 | Sensing factor: UV Index, Responsibility Range: 297~391 nm UV Index Measurement Range: 0~30 1 UVI results an output voltage 170 mV Operating Temperature: −25~85 °C |
Microcontroller Unit | Arduino Nano | ATmega328 |
Display Module | 12864 OLED LCD | Pixel: 128 × 64, Communication Protocol: SPI |
BLE Module | HM-10 | Communication Protocol: BLE (Bluetooth Low Energy) |
Rechargeable Battery Module | PKCELL LP785060 | Capacity: 500 mAh, Step-up Regulator |
Hour | CAS 140CT | Device | Abs. Error | Hour | CAS 140CT | Device | Abs. Error |
---|---|---|---|---|---|---|---|
5 | 0.000265 | 3.35E-07 | 0.000265 | 13 | 0.127031 | 0.122679 | 0.004352 |
6 | 0.003485 | 0.000621 | 0.002864 | 14 | 0.096203 | 0.094149 | 0.002054 |
7 | 0.018658 | 0.011525 | 0.007133 | 15 | 0.074512 | 0.071889 | 0.002623 |
8 | 0.047482 | 0.038996 | 0.008486 | 16 | 0.038775 | 0.036085 | 0.00269 |
9 | 0.08145 | 0.076481 | 0.004969 | 17 | 0.012062 | 0.009759 | 0.002303 |
10 | 0.117902 | 0.112449 | 0.005453 | 18 | 0.002144 | 0.000277 | 0.001867 |
11 | 0.14112 | 0.137568 | 0.003551 | 19 | 0.000163 | 0 | 0.000163 |
12 | 0.141011 | 0.138258 | 0.002753 | Mean Absolute Error | 0.003435 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, D.-H.; Oh, S.-T.; Lim, J.-H. Development of a UV Index Sensor-Based Portable Measurement Device with the EUVB Ratio of Natural Light. Sensors 2019, 19, 754. https://doi.org/10.3390/s19040754
Park D-H, Oh S-T, Lim J-H. Development of a UV Index Sensor-Based Portable Measurement Device with the EUVB Ratio of Natural Light. Sensors. 2019; 19(4):754. https://doi.org/10.3390/s19040754
Chicago/Turabian StylePark, Dae-Hwan, Seung-Taek Oh, and Jae-Hyun Lim. 2019. "Development of a UV Index Sensor-Based Portable Measurement Device with the EUVB Ratio of Natural Light" Sensors 19, no. 4: 754. https://doi.org/10.3390/s19040754
APA StylePark, D.-H., Oh, S.-T., & Lim, J.-H. (2019). Development of a UV Index Sensor-Based Portable Measurement Device with the EUVB Ratio of Natural Light. Sensors, 19(4), 754. https://doi.org/10.3390/s19040754