Determination of the Location and Magnetic Moment of Ferromagnetic Objects Based on the Analysis of Magnetovision Measurements
<p>Schematic block diagram of the magnetovision scanning system.</p> "> Figure 2
<p>Sample magnetovision measurement of magnetic field induction of ME8 magnetic moment standard. Coordinates of the plot are <span class="html-italic">X</span> and <span class="html-italic">Y</span> (horizontal measurement plane), and vertical component <span class="html-italic">B<sub>Z</sub></span> of the magnetic field is shown. The axis of the standard was perpendicular to the measurement plane, and the vertical distance <span class="html-italic">z</span><sub>0</sub> was set to 140 mm.</p> "> Figure 3
<p>Measurement plane and sample geometrical values.</p> "> Figure 4
<p>Approximation of ME8 induction of magnetic field distribution (black lines—measurement results) to the model (4). Coordinates set: (<span class="html-italic">x</span><sub>0</sub>, <span class="html-italic">y</span><sub>0</sub>, <span class="html-italic">z</span><sub>0</sub>) = (0, 0, 140) mm, <span class="html-italic">β</span> = 0°, and <span class="html-italic">φ</span> = 0°. Three-dimensional graph of the distribution of <span class="html-italic">B</span> field values.</p> "> Figure 5
<p>Approximation of ME8 induction of magnetic field distribution (black lines—measurement results) to the model (4). Coordinates set: (<span class="html-italic">x</span><sub>0</sub>, <span class="html-italic">y</span><sub>0</sub>, <span class="html-italic">z</span><sub>0</sub>) = (0, 0, 140) mm, <span class="html-italic">β</span> = 0°, and <span class="html-italic">φ</span> = 90°. Three-dimensional graph of the distribution of <span class="html-italic">B</span> field values. The plane of the background field is inclined due to the gradient of the magnetic field—the heterogeneity of the background field.</p> "> Figure 6
<p>Dependence of the determined values of angles <span class="html-italic">φ<sub>w</sub></span> and <span class="html-italic">β<sub>w</sub></span> on the set angle <span class="html-italic">φ</span>. Set ME8 standard coordinates (<span class="html-italic">x</span><sub>0</sub>, <span class="html-italic">y</span><sub>0</sub>, <span class="html-italic">z</span><sub>0</sub>) = (0, 0, 140) mm.</p> "> Figure 7
<p>Dependence of the determined distance value from the object on the set angle <span class="html-italic">φ</span>. Set coordinates of the ME8 standard (<span class="html-italic">x</span><sub>0</sub><span class="html-italic">, y</span><sub>0</sub><span class="html-italic">, z</span><sub>0</sub>) = (0, 0, 140) mm. Red line—the set value <span class="html-italic">z</span><sub>0</sub> of the object.</p> "> Figure 8
<p>Dependence of the determined magnetic moment value of the object on the set angle <span class="html-italic">φ</span>. Set coordinates of the ME8 standard (<span class="html-italic">x</span><sub>0</sub>, <span class="html-italic">y</span><sub>0</sub>, <span class="html-italic">z</span><sub>0</sub>) = (0, 0, 140) mm. Red line—the <span class="html-italic">m</span> value of the object.</p> "> Figure 9
<p>The dependence of the value of the determined magnetic moment of the object (<span class="html-italic">m<sub>w</sub></span>) on the set distance <span class="html-italic">z<sub>0</sub></span>. Position of the ME8 standard (<span class="html-italic">x</span><sub>0</sub>, <span class="html-italic">y</span><sub>0</sub>, <span class="html-italic">z</span><sub>0</sub>) = (0, 0, 110:240) mm. Red line—<span class="html-italic">m</span> value of the object.</p> "> Figure 10
<p>The dependence of the value of the determined distance from the object (<span class="html-italic">z<sub>w</sub></span>) on the set distance <span class="html-italic">z</span><sub>0</sub>. Position of the ME8 standard (<span class="html-italic">x</span><sub>0</sub>, <span class="html-italic">y</span><sub>0</sub>, <span class="html-italic">z</span><sub>0</sub>) = (0, 0, 110:240) mm. Red line—<span class="html-italic">z</span><sub>0</sub> value of the object.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Owen, M. UXO for land projects—So, what is the risk and do we understand it? In Proceedings of the Ciria Event “UXO for Land Projects—Are We Doing Any Better?”, London, UK, 16 June 2016. [Google Scholar]
- Garret, C. Modern Metal Detectors, 2nd ed.; Ram Publishing Company: Los Angeles, CA, USA, 1995. [Google Scholar]
- IMAS. International Mine Action Standards. 2001 (Updated). Available online: https://www.mineactionstandards.org/ (accessed on 9 September 2018).
- Smith, A. Database of Demining Accidents (DDAS): Software and Data; GICHD: Geneva, Switzerland, 2001. [Google Scholar]
- Burke, H. Handbook of Magnetic Phenomena; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Tumanski, S. Handbook of Magnetic Measurements; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Schubert, H.; Kuznetsov, A. Detection of Explosives and Landmines—Methods and Field Experience; Kluwer Academic Publishers: Dordrecht, The Netherlands; London, UK; Boston, MA, USA, 2002. [Google Scholar]
- Ripka, P. Review of fluxgate sensors. Sens. Actuators A Phys. 1992, 33, 129–141. [Google Scholar] [CrossRef]
- King, C. Jane’s Mines and Mine Clearence; Jane’s Information Group, (Annual Publication): London, UK, 1999. [Google Scholar]
- Nelson, H.; McDonald, J. Multisensor towed array detection system for UXO detection. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1139–1145. [Google Scholar] [CrossRef] [Green Version]
- Billings, S. Discrimination and Classification of Buried Unexploded Ordnance Using Magnetometry. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1241–1251. [Google Scholar] [CrossRef]
- Billings, S. Magnetic models of unexploded ordnance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2115–2123. [Google Scholar] [CrossRef]
- Billings, S. Field measurements of induced and remanent moments of unexploded ordnance and shrapnel. IEEE Trans. Geosci. Remote Sens. 2009, 47, 815–827. [Google Scholar] [CrossRef]
- Billings, S.; Beran, L. Experimental measurements of shock induced changes to the magnetization of unexploded ordnance. J. Appl. Geophys. 2014, 105, 138–146. [Google Scholar] [CrossRef]
- Beran, L. Incorporating Uncertainty in Unexploded Ordnance Discrimination. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3071–3080. [Google Scholar] [CrossRef]
- Barto, A.; Clausen, C. A magnetometer survey with electronic positioning control and calculator-plotter system. Hist. Archaeol. 1975, 9, 26–40. [Google Scholar]
- Chang-Da, Z. Airborne Tensor Magnetic Gradiometry—The Latest Progress of Airborne Magnetometric Technology. Chin. J. Eng. Geophys. 2006, 5, 354–361. [Google Scholar]
- Edwards, R. Ore Deposit Geology and Its Influence on Mineral Exploration; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Alva-Valdivia, L.M. Magnetic mineralogy and properties of the Pena Colorada iron ore deposit, Guerrero Terrane: Implications for magnetometric modeling. J. S. Am. Earth Sci. 2000, 13, 415–428. [Google Scholar] [CrossRef]
- Strahov, V.N. On the solution of the direct and inverse problems of gravity and magnetic exploration. Rep. Acad. Sci. USSR 1974, 219, 336–339. (In Russian) [Google Scholar]
- Yarotskiy, V.A. Methods for detecting and locating objects by their constant magnetic field. Foreign Electron. 1984, 3, 45–56. (In Russian) [Google Scholar]
- Semenov, V.G.; Dzariya, G.N. The solution of the inverse problem of determining the dipole magnetic moment. Metrology 1977, 12, 29–35. (In Russian) [Google Scholar]
- Krasnov, I.P. On the determination of magnetic moments from measurements on closed surfaces. Geomagn. Aeron. 1981, 1, 137–142. (In Russian) [Google Scholar]
- Basenko, A.I.; Zaionchkovskiy, A.Y.; Semenov, V.G. Integral method for localizing a dipole source of a magnetic field. In Proceedings of the 3rd All-Union Conference “Methods and Tools for Measuring Magnetic Field Parameters”, Leningrad, Russia, September 1985; pp. 249–250. (In Russian). [Google Scholar]
- Semenov, V.G.; Dzariya, G.N. Comparative analysis of magnetic moment measurement methods. In Proceedings of the 3rd All-Union Conference “Methods and Tools for Measuring Magnetic Field Parameters”, Leningrad, Russia, September 1985; pp. 228–229. (In Russian). [Google Scholar]
- Janus, R.I.; Drozhzhina, V.I.; Vedenev, M.A.; Reutov, Y.Y.; Leman, V.P. On the use of fluxgate pole detector in the surgical extraction of foreign ferromagnetic objects. Proc. Inst. Met. Phys. USSR 1967, 26, 126–128. (In Russian) [Google Scholar]
- Pudov, V.I.; Reutov, Y.Y.; Korotkih, S.A. Localization and removal of alien metallic bodies using the LIT-2 alien bodies locator. Med. Equip. 1996, 4, 23–28. (In Russian) [Google Scholar]
- Wang, C. A modified magnetic gradient contraction based method for ferromagnetic target localization. Sensors 2016, 16, 2168. [Google Scholar] [CrossRef]
- Tumanski, S.; Stabrowski, M. The magnetovision method as a tool to investigate the quality of electrical steel. Meas. Sci. Technol. 1998, 9, 488. [Google Scholar] [CrossRef]
- Tumanski, S. The experimental verification of the condition of the magnetic material caused by different technological processes. J. Magn. Magn. Mater. 2000, 215, 749–752. [Google Scholar] [CrossRef]
- Tumanski, S.; Liszka, A. The methods and devices for scanning of magnetic fields. J. Magn. Magn. Mater. 2002, 242, 1253–1256. [Google Scholar] [CrossRef]
- Michalski, A. Magnetovision [magnetic field scanning system]. IEEE Instrum. Meas. Mag. 2002, 5, 66–69. [Google Scholar] [CrossRef]
- Liang, C.W. A real time high sensitivity high spatial resolution quantum well hall effect magnetovision camera. Sens. Actuators A Phys. 2017, 265, 127–137. [Google Scholar] [CrossRef]
- Blakely, R. Potential Theory in Gravity & Magnetic. Applications; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Mattei, G.; Giordano, F. Integrated geophysical research of Bourbonic shipwrecks sunk in the Gulf of Naples in 1799. J. Archaeol. Sci. Rep. 2015, 1, 64–72. [Google Scholar] [CrossRef]
- Praslička, D.; Blažek, J.; Hudak, J.; Mikita, I.; Moucha, V. Industrial applications of magnetometry. J. Electr. Eng. 2015, 6, 190–192. [Google Scholar]
- Sette, E.; Pallarès, D.; Johnsson, F.; Ahrentorp, F.; Ericsson, A.; Johansson, C. Magnetic tracer-particle tracking in a fluid dynamically down-scaled bubbling fluidized bed. Fuel Process. Technol. 2015, 138, 368–377. [Google Scholar] [CrossRef]
- Ma, Y.; Mao, Z.H.; Jia, W.; Li, C.; Yang, J.; Sun, M. Magnetic hand tracking for human-computer interface. IEEE Trans. Magn. 2011, 47, 970–973. [Google Scholar] [CrossRef]
- Magnet-Physik Dr. Steingroever GmbH. Available online: http://www.magnet-physik.de/messtechnik-normale.html?L=1 (accessed on 9 September 2018).
- Nowicki, M.; Szewczyk, R. Ferromagnetic Objects Magnetovision Detection System. Materials 2013, 6, 5593–5610. [Google Scholar] [CrossRef] [PubMed]
- Nappi, C.; Sarnelli, E. Magnetic dipole imaging by a scanning magnetic microscope. Meas. Sci. Technol. 2008, 19, 015508. [Google Scholar]
- Munschy, M.; Boulanger, D.; Ulrich, P.; Bouiflane, M. Magnetic mapping for the detection and characterization of UXO: Use of multi-sensor fluxgate 3-axis magnetometers and methods of interpretation. J. Appl. Geophys. 2007, 61, 168–183. [Google Scholar] [CrossRef]
- Guelle, D. Metal Detector Handbook for Humanitarian Demining; Office for Official Publications of the European Communities: Brussels, Belgium, 2003. [Google Scholar]
- Doll, W. A Ground-Based Squid Magnetometer. In Proceedings of the 18th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, Atlanta, GA, USA, 3–7 April 2005. [Google Scholar]
- Nowicki, M.; Szewczyk, R. Magnetovision Scanning System for Detection of Dangerous Objects. Acta Phys. Pol. A 2014, 126, 382–383. [Google Scholar] [CrossRef]
- Reutov, Y.Y.; Litvinenko, A.A. Magnetic fields acting on humans and other biological objects in the conditions of the modern city. Ecology 1987, 1, 66–74. [Google Scholar]
- Reutov, Y.Y.; Pudov, V.I.; Litvinenko, A.A. Industrial pollution of the city of Yekaterinburg by magnetic fields of sound frequencies. Defectoscopy 1995, 6, 47–51. [Google Scholar]
mw (Am2) | zw (mm) | xw (mm) | yw (mm) | φw (°) | βw (°) | c (µT) | |
---|---|---|---|---|---|---|---|
Mean value | 0.575 | 165.7 | 35.2 | -30.9 | 66.0 | 2.0 | 41.2 |
Standard deviation | 0.020 | 1.6 | 1.9 | 1.4 | 1.5 | 0.8 | 0.2 |
Difference from the set value | 0.059 | 0.7 | 5.2 | -0.9 | 1.0 | 2.0 | 0.2 |
Relative error | 9.7% | 0.5% | 14% | 3% | 1.5% | - | 0.5% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowicki, M.; Szewczyk, R. Determination of the Location and Magnetic Moment of Ferromagnetic Objects Based on the Analysis of Magnetovision Measurements. Sensors 2019, 19, 337. https://doi.org/10.3390/s19020337
Nowicki M, Szewczyk R. Determination of the Location and Magnetic Moment of Ferromagnetic Objects Based on the Analysis of Magnetovision Measurements. Sensors. 2019; 19(2):337. https://doi.org/10.3390/s19020337
Chicago/Turabian StyleNowicki, Michał, and Roman Szewczyk. 2019. "Determination of the Location and Magnetic Moment of Ferromagnetic Objects Based on the Analysis of Magnetovision Measurements" Sensors 19, no. 2: 337. https://doi.org/10.3390/s19020337
APA StyleNowicki, M., & Szewczyk, R. (2019). Determination of the Location and Magnetic Moment of Ferromagnetic Objects Based on the Analysis of Magnetovision Measurements. Sensors, 19(2), 337. https://doi.org/10.3390/s19020337