Predicting Emotion and Engagement of Workers in Order Picking Based on Behavior and Pulse Waves Acquired by Wearable Devices
<p>Task management using the prediction of pleasure, arousal, and engagement.</p> "> Figure 2
<p>A questionnaire based on the circumplex model of affect.</p> "> Figure 3
<p>The experimental environment and the position of wearable devices.</p> "> Figure 4
<p>The sample size of engagement (EG) and subjective task difficulty.</p> "> Figure 5
<p>Covariance structure analysis result of the psychological model (PU: Pleasant emotion, AS: Arousal, EG: engagement, FE: flow experience, CT: complexity of the task, TG: target, FD: feedback, ER: human error, STD: subjective task difficulty, WE: work efficiency.).</p> "> Figure 6
<p>The accuracy of deep neural networks when inputted all time series features.</p> "> Figure 7
<p>The accuracy of generalized model of pleasant emotion.</p> "> Figure 8
<p>The accuracy of generalized prediction model of arousal.</p> "> Figure 9
<p>The accuracy of generalized model of engagement.</p> "> Figure 10
<p>The accuracy of personalized model of pleasant emotion.</p> "> Figure 11
<p>The accuracy of personalized prediction model of arousal.</p> "> Figure 12
<p>The accuracy of personalized model of engagement.</p> "> Figure 13
<p>The accuracy of personalized model of pleasant emotion.</p> ">
Abstract
:1. Introduction
- (1)
- Emotion and engagement of workers were predicted from behavior and pulse waves acquired with wearable devices and the accuracy of the prediction was clarified. Furthermore, we identified important variables to predict emotion and engagement.
- (2)
- We construct a psychology model of worker and clarified effects of emotion and engagement.
2. Related Research
2.1. Definition of Flow Experience
2.2. Measurement of Emotion
2.3. Measurement of Engagement
3. Predicting Emotion and Engagement Using Deep Neural Networks
3.1. Behavior and Pulse Wave Feature Calculation
3.2. Variable Selection by a Hypothesis Test
3.3. Prediction of Emotion and Engagement by Deep Neural Networks
4. Experimental Results
4.1. Experimental Procedure
4.2. Validation of the Psychological Model
4.3. Prediction of Pleasant Emotion, Arousal, and Engagement Using Deep Neural Networks
4.3.1. Accuracy of Generalized Model
4.3.2. Accuracy of the Personalized Model
5. Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
Appendix A
Symbol | Average | Brunner Munzel Test | |||
---|---|---|---|---|---|
First Period | Second Period | Total | Statistics | p-Value | |
Pleasant | 0.69 | 0.91 | 0.8 | 1.67 | 0.1 |
Arousal | 1.11 | 1.36 | 1.24 | 2.03 | 0.04 |
Subjective task difficulty | −0.33 | −0.24 | −0.28 | 0.91 | 0.36 |
Engagement | 3.43 | 3.64 | 3.54 | 2.73 | 0.01 |
Human error | 0.55 | 0.43 | 0.49 | −1.46 | 0.15 |
Work efficiency | 0.23 | 0.32 | 0.27 | −6.26 | 0 |
q(1)FE | 3.2 | 3.8 | 3.5 | 2.1 | 0.05 |
q(2)FE | 3.4 | 4.1 | 3.8 | 1.9 | 0.07 |
q(3)FE | 3.2 | 4.1 | 3.7 | 3 | 0.01 |
q(4)FE | 2.8 | 3.6 | 3.2 | 2.5 | 0.02 |
q(5)FE | 3.8 | 3.9 | 3.9 | 0.2 | 0.85 |
q(6)FE | 3.4 | 3.6 | 3.5 | 0.86 | 0.4 |
q(7)FE | 2.5 | 2.6 | 2.6 | 0.51 | 0.61 |
q(8)FE | 2.9 | 3.4 | 3.2 | 1.2 | 0.26 |
q(9)FE | 3.3 | 3.8 | 3.6 | 1.1 | 0.26 |
Symbol | Average | Brunner Munzel Test | ||
---|---|---|---|---|
Feedback | Natural | Statistics | p-Value | |
Pleasant | 0.91 | 1 | 0.84 | 0.4 |
Arousal | 1.4 | 1.2 | −1.4 | 0.17 |
Subjective task difficulty | 2.8 | 2.7 | −0.79 | 0.43 |
Engagement | 3.6 | 3.4 | −2.5 | 0.01 |
Human error | 0.46 | 0.52 | 0.66 | 0.51 |
Work efficiency | 0.28 | 0.27 | 0.92 | 0.36 |
q(1)FE | 3.5 | 3.5 | 0.28 | 0.78 |
q(2)FE | 4 | 3.5 | −1.6 | 0.13 |
q(3)FE | 4 | 3.4 | −1.8 | 0.09 |
q(4)FE | 3.5 | 2.9 | −1.7 | 0.09 |
q(5)FE | 4.1 | 3.7 | −0.52 | 0.61 |
q(6)FE | 3.5 | 3.5 | 0.14 | 0.89 |
q(7)FE | 2.6 | 2.5 | −0.54 | 0.59 |
q(8)FE | 3.2 | 3.1 | −0.61 | 0.55 |
q(9)FE | 3.7 | 3.4 | −1.02 | 0.31 |
Item | Average | Brunner Munzel Test | ||
---|---|---|---|---|
Error | Success | Statistics | p-Value | |
Pleasant | 0.53 | 0.91 | −2.5 | 0.01 |
Arousal | 1.1 | 1.3 | −1.2 | 0.25 |
Engagement | 3.1 | 2.6 | 0.26 | 0.8 |
Pleasant | Arousal | Subjective Task Difficulty | Engagement | Work Efficiency | Human Error | |
---|---|---|---|---|---|---|
Flow experience | 0.47 | 0.7 | - | 0.54 | - | - |
Complexity of the task | −0.16 | - | 0.78 | 0.12 | 0.46 | 0.29 |
Uniquenesses | 0.71 | 0.53 | 0.42 | 0.73 | 0.9 | 0.78 |
References
- Battini, D.; Faccio, M.; Persona, A.; Sgarbossa, F. Design of the optimal feeding policy in an assembly system. Int. J. Prod. Econ. 2009, 121, 233–254. [Google Scholar] [CrossRef]
- Tompkins, J.A.; White, Y.A.; Bozer, E.H.; Tanchoco, J.M.A. Facilities Planning, 4th ed.; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Thayer, R.E. The Biopsychology of Mood and Arousal; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Bakker, A.B.; Schaufeli, W.B.; Leiter, M.P.; Taris, T.W. Work engagement: An emerging concept in occupational health psychology. Work Stress 2008, 22, 187–200. [Google Scholar] [CrossRef]
- Sharot, T. The optimism bias. Curr. Biol. 2011, 21, R941–R945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steptoe, A.; Wardle, J.; Marmot, M. Positive affect and health-related neuroendocrine, cardiovascular, and inflammatory processes. Proc. Natl. Acad. Sci. USA 2005, 102, 6508–6512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodruffe, C. The crucial importance of employee engagement. Hum. Resour. Manag. Int. Dig. 2006, 14, 3–5. [Google Scholar] [CrossRef]
- Schaufeli, W.B.; Bakker, A.B.; van der Heijden, F.M.; Prins, J.T. Workaholism among medical residents: It is the combination of working excessively and compulsively that counts. Int. J. Stress Manag. 2009, 16, 249. [Google Scholar] [CrossRef]
- White, B. Employee Engagement Report; Blessing White: Princeton, NJ, USA, 2011; Retrieved. [Google Scholar]
- Alshallah, S. Job satisfaction and motivation: How do we inspire employees? Radiol. Manag. 2004, 26, 47–51. [Google Scholar]
- Caplan, S.; Whittemore, R. Barriers to treatment engagement for depression among Latinas. Issues Ment. Health Nurs. 2013, 34, 412–424. [Google Scholar] [CrossRef]
- Russell, J.A. A circumplex model of affect. J. Personal. Soc. Psychol. 1980, 39, 1161. [Google Scholar] [CrossRef]
- Jackson, S.A.; Marsh, H.W. Development and validation of a scale to measure optimal experience: The Flow State Scale. J. Sport Exerc. Psychol. 1996, 18, 17–35. [Google Scholar] [CrossRef]
- Likert, R. A Technique for the Measurement of Attitudes. Arch. Psychol. 1932, 140, 55. [Google Scholar]
- Watson, D.; Clark, L.A.; Tellegen, A. Development and validation of brief measures of positive and negative affect: The PANAS scales. J. Personal. Soc. Psychol. 1988, 54, 1063–1070. [Google Scholar] [CrossRef]
- Mahnke, R.; Benlian, A.; Hess, T. Flow Experience in Information Systems Research: Revisiting its Conceptualization, Conditions, and Effects. ICIS 2014. [Google Scholar] [CrossRef]
- Punj, G. Consumer decision making on the web: A theoretical analysis and research guidelines. Psychol. Mark. 2012, 29, 791–803. [Google Scholar] [CrossRef]
- Petrou, P.; Demerouti, E.; Peeters, M.C.W.; Schaufeli, W.B.; Hetland, J. Crafting a job on a daily basis: Contextual correlates and the link to work engage-ment. J. Organ. Behav. 2012, 33, 1120–1141. [Google Scholar] [CrossRef]
- Spector, P.E.; Cooper, C.L.; Sanchez, J.I.; O’Driscoll, M.; Sparks, K.; Bernin, P.; Büssing, A.; Dewe, P.; Hart, P.; Lu, L.; et al. Locus of control and well-being at work: How generalizable arewestern findings? Acad. Manag. J. 2002, 45, 453–466. [Google Scholar] [CrossRef]
- Reis, H.T.; Sheldon, K.M.; Gable, S.L.; Roscoe, J.; Ryan, R.M. Daily well-being: The role of autonomy, competence, and relatedness. Personal. Soc. Psychol. Bull. 2000, 26, 419–435. [Google Scholar] [CrossRef]
- Fullagar, C.J.; Kelloway, E.K. Flow at work: An experience samplingapproach. J. Occup. Organ. Psychol. 2009, 82, 595–615. [Google Scholar] [CrossRef]
- Vayrynen, E.; Kortelainen, J.; Seppanen, T. Classifier-based learning of nonlinear feature manifold for visualization of emotional speech prosody. IEEE Trans. Affect. Comput. 2013, 4, 47–56. [Google Scholar] [CrossRef]
- Zeng, Z.; Fu, Y.; Roisman, G.I.; Wen, Z.; Hu, Y.; Huang, T.S. Spontaneous emotional facial expression detection. J. Multimedia 2006, 1, 1–8. [Google Scholar] [CrossRef]
- Poh, M.Z.; Swenson, N.C.; Picard, R.W. A wearable sensor for unobtrusive, long-term assessment of electrodermal activity. IEEE Trans. Biomed. Eng. 2010, 57, 1243–1252. [Google Scholar] [PubMed]
- Kreibig, S.D. Autonomic nervous system activity in emotion: A review. Biol. Psychol. 2010, 84, 394–421. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Ahmed, B.; Gutierrez-Osuna, R. Development and evaluation of an ambulatory stress monitor based on wearable sensors. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Cannon, W.B. Bodily Changes in Pain, Hunger, Fear and Rage, 2nd ed.; D. Appleton & Company: New York, NY, USA, 1929. [Google Scholar]
- Van Den Broek, E.L.; Lisý, V.; Janssen, J.H.; Westerink, J.H.; Schut, M.H.; Tuinenbreijer, K. Affective man-machine interface: Unveiling human emotions through biosignals. In International Joint Conference on Biomedical Engineering Systems and Technologies; Springer: Berlin/Heidelberg, Germany, January 2009; pp. 21–47. [Google Scholar]
- Soleymani, M.; Lichtenauer, J.; Pun, T.; Pantic, M. A multimodal database for affect recognition and implicit tagging. IEEE Trans. Affect. Comput. 2012, 3, 42–55. [Google Scholar] [CrossRef]
- Schmidt, P.; Reiss, A.; Duerichen, R.; Van Laerhoven, K. Wearable affect and stress recognition: A review. arXiv, 2018; arXiv:1811.08854. [Google Scholar]
- Kajiwara, Y.; Yonekura, S.; Kimura, H. Prediction of Future Mood Using Majority Vote Based on Certainty Factor. Sens. Mater. 2018, 30, 1473–1486. [Google Scholar] [CrossRef]
- Oviatt, S. Human-centered design meets cognitive load theory: Designing interfaces that help people think. In Proceedings of the 14th ACM international conference on Multimedia; ACM: New York, NY, USA, 2006; pp. 871–880. [Google Scholar]
- Uemura, Y.; Kajiwara, Y.; Shimakawa, H. Figuring out Distraction Degree from Working Memory Consumption for Pedestrian Safety. Int. J. Internet Things 2017, 6, 1–8. [Google Scholar]
- Won, B.Y.; Lee, H.J.; Jiang, Y.V. Statistical learning modulates the direction of the first head movement in a large-scale search task. Atten. Percept. Psychophys. 2015, 77, 2229–2239. [Google Scholar] [CrossRef] [Green Version]
- Kang, O.; Wheatley, T. Pupil dilation patterns spontaneously synchronize across individuals during shared attention. J. Exp. Psychol. Gen. 2017, 146, 569. [Google Scholar] [CrossRef]
- Kalogeropoulou, Z.; Rolfs, M. Saccadic eye movements do not disrupt the deployment of feature-based attention. J. Vis. 2017, 17, 4. [Google Scholar] [CrossRef]
- Nikolin, S.; Boonstra, T.W.; Loo, C.K.; Martin, D. Combined effect of prefrontal transcranial direct current stimulation and a working memory task on heart rate variability. PLoS ONE 2017, 12, e0181833. [Google Scholar] [CrossRef] [PubMed]
- McDuff, D.; Gontarek, S.; Picard, R. Remote measurement of cognitive stress via heart rate variability. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014, 2957–2960. [Google Scholar] [CrossRef]
- Baddeley, A. Working memory. Science 1992, 255, 556–559. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, E.; Ferreira, D.; Kim, S.; Siirtola, P.; Röning, J.; Forlizzi, J.F.; Dey, A.K. Assessing real-time cognitive load based on psycho-physiological measures for younger and older adults. In Proceedings of the 2014 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB), Orlando, FL, USA, 9–12 December 2014; pp. 39–48. [Google Scholar]
- Solovey, E.T.; Zec, M.; Garcia Perez, E.A.; Reimer, B.; Mehler, B. Classifying driver workload using physiological and driving performance data: Two field studies. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems; ACM: New York, NY, USA, 2014; pp. 4057–4066. [Google Scholar]
- Bengio, Y. Learning deep architectures for AI. Found. Trends Mach. Learn. 2009, 2, 1–127. [Google Scholar] [CrossRef]
- Csikszentmihalyi, M. Flow and the Psychology of Discovery and Invention; HarperPerennial: New York, NY, USA, 1997; p. 39. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [Google Scholar] [CrossRef] [PubMed]
Symbol | Item |
---|---|
q(1)FE | I felt that the task difficulty and worker skill of the work are balanced. |
q(2)FE | I was fused with behavior and consciousness. |
q(3)FE | I had a clear target. |
q(4)FE | I had a clear feedback. |
q(5)FE | I paid all the attention to the work. |
q(6)FE | I had a sense of controlling the behavior. |
q(7)FE | I could move my body naturally. |
q(8)FE | I feel the transformation of time sense. |
q(9)FE | I enjoyed a task. |
Device | Types and Part of the Body | ||
---|---|---|---|
Power Spectrum Value | Peak Valley Value | Time | |
Pulse wave sensor | HF, LF, VLF, TP, Heart rate (HR), Lyapunov exponent, Entropy | VLF, LF, HF, TP, Heart rate (HR), R-R interval (RR), Lyapunov exponent, Entropy | - |
Eye tracker | Eye movement in XYZ coordinate system(3D), Point of view(2D), Pupil diameter (PD), Triaxial accelerometer, Triaxial angular velocity | Eye movement in XYZ coordinate system(3D), Point of view(2D), Pupil diameter (PD), Triaxial accelerometer, Triaxial angular velocity | Eye movement, Eye blink (BK), Saccade |
Motion detector | Left and right hands(LH, RH), Left and right elbow(LA, RA), Left and right shoulder(SL, SR), Buttocks(BT), Lumbar spine(S1), Thoracic spine(S2), Cervical spine(S3), head(HD) of the rotation angle | Left and right hands(LH, RH), Left and right elbow(LA, RA), Left and right shoulder(SL, SR), Buttocks(BT), Lumbar spine(S1), Thoracic spine(S2), Cervical spine(S3), head(HD) of the rotation angle | - |
Mathematical Symbols | Meaning of Symbols |
---|---|
m(data) | Average of d time series data |
σ(data) | Standard deviation of time series data |
η(data) | Minimum value of time series data |
ζ(data) | Maximum value of time series data |
c(data) | Number of extremes of time series data |
v(data, threshold) | Peak valley value of time series data when setting threshold |
f(data, frequency) | Power spectrum value at frequency of time series data |
e(data) | Entropy of time series data |
a(part)axis | Acceleration of each axis of acceleration sensors attached to a part of the body |
g(part)axis | Angular velocity of each axis of angular velocity sensors attached to a part of body |
r(part)axis | Rotation angle of each axis of motion detectors attached to a part of body |
p(type) | Types of time series data acquired by the pulse wave sensor. |
u(type) | Types of time series data acquired by eye tracker |
Arousal/Pleasure | −3 | −2 | −1 | 0 | +1 | +2 | +3 |
---|---|---|---|---|---|---|---|
+3 | 2 | 5 | 1 | 10 | 11 | 43 | 21 |
+2 | 4 | 4 | 28 | 31 | 36 | 79 | 7 |
+1 | 2 | 5 | 3 | 39 | 32 | 25 | 5 |
0 | 1 | 4 | 4 | 47 | 9 | 6 | 5 |
−1 | 2 | 3 | 15 | 15 | 9 | 3 | 4 |
−2 | 0 | 1 | 2 | 0 | 11 | 4 | 3 |
−3 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
Pulse Wave Sensor | Eye Tracker | Motion Detector | ||||||
---|---|---|---|---|---|---|---|---|
Variable | UPL | PL | Variable | UPL | PL | Variable | UPL | PL |
f(e(aS3),0.1) | 0.29 | 0.24 | η(uPD) | 2.91 | 3.12 | f(rzBT, 17.5) | 2.46 | 0.77 |
f(e(aS3),0.15) | 0.16 | 0.12 | m(v(uz3D, 0.9)) | 457 | 415 | f(rzBT, 15) | 2.85 | 0.87 |
f(e(aS3),0.25) | 0.09 | 0.06 | m(uPD) | 3.79 | 3.98 | f(rzBT, 12.5) | 3.31 | 1.07 |
f(e(aS3),0.3) | 0.07 | 0.05 | σ(v(uz3D, 0.75)) | 417 | 435 | f(rzBT, 10) | 4.23 | 1.42 |
σ(v(e(aS3),0.25)) | 4.42 | 3.17 | m(v(uz3D, 0.75)) | 523 | 461 | f(rzBT, 7.5) | 5.94 | 2.06 |
Pulse Wave Sensor | Eye Tracker | Motion Detector | ||||||
---|---|---|---|---|---|---|---|---|
Variable | SE | AR | Variable | SE | AR | Variable | SE | AR |
t | 47.3 | 43 | f(ux2D, 6)) | 1039 | 948 | c(v(rzLA, 0.75)) | 82.1 | 55.9 |
c(v(pRR,0.5)) | 5 | 3.64 | f(ux2D, 8)) | 6238 | 5162 | c(v(ryLA, 0.75)) | 69.5 | 51.7 |
m(v(pHR,0.9)) | 902 | 966 | m(v(azHD, 0.75)) | 2.84 | 3.9 | m(rLA) | −39.1 | −20.4 |
m(v(pHR,0.5)) | 892 | 945 | m(uBK) | 326 | 182 | c(v(rzLA, 0.25)) | 220 | 194 |
c(v(pHR,0.25)) | 13.2 | 11.1 | f(azHD, 45)) | 455 | 235 | η(rLA) | −81.1 | −82.1 |
Pulse Wave Sensor | Eye Tracker | Motion Detector | ||||||
---|---|---|---|---|---|---|---|---|
Variable | BR | CR | Variable | BR | CR | Variable | BR | CR |
m(v(pLF,0.9)) | 2325 | 1484 | f(ux2D, 2)) | 942 | 1664 | f(rzBT, 10) | 1.4 | 1.81 |
σ(v(pLF,0.9)) | 3695 | 2711 | f(ux2D, 6)) | 1068 | 944 | f(ryBT, 5) | 2.4 | 2.35 |
m(v(pLF,0.25)) | 2620 | 1708 | f(azHD, 35)) | 333 | 440 | m(v(rySL, 0.9)) | 0.49 | 0.2 |
σ(v(pHF,0.9)) | 4782 | 3317 | f(azHD, 30)) | 492 | 664 | m(v(rySL, 0.25)) | 0.36 | 0.14 |
σ(v(pLF,0.75)) | 3570 | 2633 | f(ayHD, 35)) | 238 | 223 | m(v(rxS2, 0.25)) | 1.57 | 3.39 |
Pulse Wave Sensor | Eye Tracker | Motion Detector | ||||||
---|---|---|---|---|---|---|---|---|
Variable | UPL | PL | Variable | UPL | PL | Variable | UPL | PL |
σ(v(e(aS3),0.9)) | 0.39 | 0.30 | η(uPD) | 2.91 | 3.12 | f(rzBT, 15) | 2.85 | 0.87 |
σ(v(e(aS3),0.75)) | 0.36 | 0.28 | m(uPD) | 3.79 | 3.98 | f(rzBT, 17.5) | 2.46 | 0.77 |
f(e(aS3),0.25) | 0.07 | 0.05 | m(v(uz3D, 0.75)) | 523 | 461 | f(rzBT, 10) | 4.23 | 1.42 |
f(e(aS3),0.15) | 0.16 | 0.12 | m(v(uz3D, 0.9)) | 457 | 415 | f(rzBT, 7.5) | 5.94 | 2.06 |
m(v(e(aS3),0.9)) | 4.85 | 3.55 | ζ(uz3D) | 851 | 769 | f(rzBT, 5.0) | 10.5 | 3.82 |
Pulse Wave Sensor | Eye Tracker | Motion Detector | ||||||
---|---|---|---|---|---|---|---|---|
Variable | SE | AR | Variable | SE | AR | Variable | SE | AR |
c(v(pRR,0.5)) | 5 | 3.64 | f(gxHD, 15)) | 1040 | 949 | c(v(ryLA, 0.75)) | 69.5 | 51.7 |
t | 47.3 | 43 | T | 47.3 | 43 | c(v(ryLA, 0.5)) | 140 | 113 |
m(v(pHR,0.5)) | 892 | 945 | uBK | 327 | 182 | c(v(rxLA, 0.5)) | 123 | 101 |
m(v(pHR,0.9)) | 902 | 966 | f(azHD, 50)) | 406 | 208 | c(v(rxLA, 0.25)) | 204 | 180 |
σ(pHR) | 410 | 512 | f(azHD, 35)) | 683 | 384 | m(v(rxLA, 0.9)) | −38.4 | −28.2 |
Pulse Wave Sensor | Eye Tracker | Motion Detector | ||||||
---|---|---|---|---|---|---|---|---|
Variable | BR | CR | Variable | BR | CR | Variable | BR | CR |
σ(v(pLF,0.9)) | 3695 | 2711 | σ(v(ayHD, 0.25)) | 2.39 | 2.08 | m(v(rySL, 0.9)) | 0.49 | 0.2 |
m(v(pLF,0.9)) | 2325 | 1484 | m(azHD) | 5.80 | 5.27 | σ(v(rxSL, 0.25)) | 4.34 | 3.87 |
σ(v(pLF,0.75)) | 3570 | 2633 | σ(v(ayHD, 0.5)) | 1.94 | 1.73 | m(v(rySL, 0.25)) | 0.36 | 0.14 |
m(v(pLF,0.25)) | 2620 | 1708 | m(v(ayHD, 0.5)) | −6.58 | −7.08 | σ(rS3) | 0.29 | 0.09 |
m(v(pLF,0.75)) | 2315 | 1454 | m(v(ayHD, 0.25)) | −7.26 | −7.66 | m(v(rxS2, 0.25)) | 1.57 | 3.39 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kajiwara, Y.; Shimauchi, T.; Kimura, H. Predicting Emotion and Engagement of Workers in Order Picking Based on Behavior and Pulse Waves Acquired by Wearable Devices. Sensors 2019, 19, 165. https://doi.org/10.3390/s19010165
Kajiwara Y, Shimauchi T, Kimura H. Predicting Emotion and Engagement of Workers in Order Picking Based on Behavior and Pulse Waves Acquired by Wearable Devices. Sensors. 2019; 19(1):165. https://doi.org/10.3390/s19010165
Chicago/Turabian StyleKajiwara, Yusuke, Toshihiko Shimauchi, and Haruhiko Kimura. 2019. "Predicting Emotion and Engagement of Workers in Order Picking Based on Behavior and Pulse Waves Acquired by Wearable Devices" Sensors 19, no. 1: 165. https://doi.org/10.3390/s19010165
APA StyleKajiwara, Y., Shimauchi, T., & Kimura, H. (2019). Predicting Emotion and Engagement of Workers in Order Picking Based on Behavior and Pulse Waves Acquired by Wearable Devices. Sensors, 19(1), 165. https://doi.org/10.3390/s19010165