A MoS2 Nanoflakes-Based LC Wireless Passive Humidity Sensor
<p>(<b>a</b>) Illustrative model schematic of LC wireless measurement; (<b>b</b>) as-designed humidity sensor; (<b>c</b>) the HFSS simulation model of as-designed humidity sensor; (<b>d</b>) the distance-S<sub>11</sub> curve of humidity sensor; (<b>e</b>) electric field distribution of sensor at 10 mm; (<b>f</b>) S<sub>11</sub> versus frequency curve of as-designed humidity sensor based on HFSS simulation at 10 mm.</p> "> Figure 2
<p>(<b>a</b>) The fabrication process and (<b>b</b>) the firing curve of the as-prepared LC humidity sensor.</p> "> Figure 3
<p>The frequencies of sensors at 10% RH and 95% RH.</p> "> Figure 4
<p>The frequency shift of sensors between 10% RH–95% RH.</p> "> Figure 5
<p>(<b>a</b>) The optical image of as-prepared LC humidity sensor; (<b>b</b>) the morphology result of as-sprayed MoS<sub>2</sub> film; (<b>c</b>) the microscopy of MoS<sub>2</sub> nanoflakes; and (<b>d</b>) X-ray diffraction patterns of MoS<sub>2</sub> nanoflakes.</p> "> Figure 6
<p>(<b>a</b>) the schematic diagram of measurement; (<b>b</b>) S<sub>11</sub> versus Frequency curve comparison of Experimental measurement and HFSS simulation at 10% RH; (<b>c</b>) S<sub>11</sub>-f curve of as-prepared humidity sensor in 10–95% RH; (<b>d</b>) f-Humidity curve of as-prepared humidity sensor under low humidity conditions (10–60% RH); (<b>e</b>) f-Humidity curve of as-prepared humidity sensor under high humidity conditions (60–95% RH).</p> "> Figure 7
<p>Sensing mechanism (<b>a</b>) under low humidity conditions (10–60% RH) and (<b>b</b>) under high humidity conditions (60–95% RH).</p> "> Figure 8
<p>(<b>a</b>) The response and recovery, (<b>b</b>) long-term stability and (<b>c</b>) hysteresis results of as-prepared humidity sensor; (<b>d</b>) frequency-temperature curve at different humidity.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Operating Principle
2.2. Sensor Fabrication
3. Results and Discussion
3.1. Characterization of the As-Prepared MoS2 Nanoflakes
3.2. Sensing Performance of As-Prepared Humidity Sensor
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nohria, R.; Khillan, R.K.; Su, Y.; Dikshit, R.; Lvov, Y.; Varahramyan, K. Humidity sensor based on ultrathin polyaniline film deposited using layer-by-layer nano-assembly. Sens. Actuators B Chem. 2006, 114, 218–222. [Google Scholar] [CrossRef]
- Zhang, D.; Tong, J.; Xia, B. Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sens. Actuators B Chem. 2014, 197, 66–72. [Google Scholar] [CrossRef]
- Tomer, V.K.; Duhan, S.; Adhyapak, P.V.; Mulla, I.S. Mn-Loaded Mesoporous Silica Nanocomposite: A Highly Efficient Humidity Sensor. J. Am. Ceram. Soc. 2015, 98, 741–747. [Google Scholar] [CrossRef]
- Tripathy, A.; Pramanik, S.; Manna, A.; Bhuyan, S.; Shah, N.F.A.; Radzi, Z.; Osman, N.A.A. Design and Development for Capacitive Humidity Sensor Applications of Lead-Free Ca,Mg,Fe,Ti-Oxides-Based Electro-Ceramics with Improved Sensing Properties via Physisorption. Sensors 2016, 16, 1135. [Google Scholar] [CrossRef] [PubMed]
- Bae, Y.M.; Lee, Y.H.; Kim, H.S.; Lee, D.J.; Kim, S.Y.; Kim, H.D. Polyimide-polyurethane/urea block copolymers for highly sensitive humidity sensor with low hysteresis. J. Appl. Polym. Sci. 2017, 134, 44973. [Google Scholar] [CrossRef]
- Estella, J.; Vicente, P.D.; Echeverría, J.C.; Garrido, J.J. A fibre-optic humidity sensor based on a porous silica xerogel film as the sensing element. Sens. Actuators B Chem. 2010, 149, 122–128. [Google Scholar] [CrossRef]
- Zhao, J.; Li, N.; Yu, H.; Wei, Z.; Liao, M.; Chen, P.; Wang, S.; Shi, D.; Sun, Q.; Zhang, G. Highly Sensitive MoS2 Humidity Sensors Array for Noncontact Sensation. Adv. Mater. 2017, 29, 1702076. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, L.; Chen, C.; Liu, M.; Dong, W.; Guo, W.; Ruan, S. High performance humidity sensor based on metal organic framework MIL-101(Cr) nanoparticles. J. Alloys Compd. 2017, 695, 520–525. [Google Scholar] [CrossRef]
- Rimeika, R.; Čiplys, D.; Poderys, V.; Rotomskis, R.; Shur, M.S. Fast-response and low-loss surface acoustic wave humidity sensor based on bovine serum albumin-gold nanoclusters film. Sens. Actuators B Chem. 2017, 239, 352–357. [Google Scholar] [CrossRef]
- Le, X.; Ding, H.; Pang, J.; Wang, Y.; Xie, J. A humidity sensor with high sensitivity and low temperature coefficient of frequency based on aln surface acoustic wave and graphene oxide sensing layer. In Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; pp. 210–213. [Google Scholar]
- Woyessa, G.; Nielsen, K.; Stefani, A.; Markos, C.; Bang, O. Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor. Opt. Express 2016, 24, 1206. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Chen, C.; Xia, K.; Peng, S.; Guan, H.; Tang, J.; Lu, H.; Yu, J.; Zhang, J.; Xiao, Y. Tungsten disulfide (WS2) based all-fiber-optic humidity sensor. Opt. Express 2016, 24, 8956. [Google Scholar] [CrossRef] [PubMed]
- Boudaden, J.; Steinmaßl, M.; Endres, H.-E.; Drost, A.; Eisele, I.; Kutter, C.; Müller-Buschbaum, P. Polyimide-Based Capacitive Humidity Sensor. Sensors 2018, 18, 1516. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Guo, L.; Wang, L.F.; Huang, J.Q.; Huang, Q.A. A passive wireless integrated humidity sensor based on dual-layer spiral inductors. In Proceedings of the 2014 IEEE Sensors, Valencia, Spain, 2–5 November 2014; pp. 1287–1289. [Google Scholar]
- Shin, J.; Hong, Y.; Wu, M.; Bae, J.H.; Kwon, H.I.; Park, B.G.; Lee, J.H. An accurate and stable humidity sensing characteristic of Si FET-type humidity sensor with MoS2 as a sensing layer by pulse measurement. Sens. Actuators B Chem. 2018, 258, 574–579. [Google Scholar] [CrossRef]
- Wang, W.; He, S.; Li, S.; Liu, M.; Pan, Y. Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator. Sens. Actuators B Chem. 2007, 125, 422–427. [Google Scholar]
- Arshak, K.; Moore, E.; Lyons, G.M.; Harris, J.; Clifford, S. A review of gas sensors employed in electronic nose applications. Sens. Rev. 2013, 24, 181–198. [Google Scholar] [CrossRef]
- Narimani, K.; Nayeri, F.D.; Kolahdouz, M.; Ebrahimi, P. Fabrication, modeling and simulation of high sensitivity capacitive humidity sensors based on ZnO nanorods. Sens. Actuators B Chem. 2016, 224, 338–343. [Google Scholar] [CrossRef]
- Salmerón, J.F.; Albrecht, A.; Kaffah, S.; Becherer, M.; Lugli, P.; Rivadeneyra, A. Wireless Chipless System for Humidity Sensing. Sensors 2018, 18, 2275. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Huang, J.Q.; Huang, Q.A. In A passive wireless graphene oxide based humidity sensor and associated portable telemetry unit. In Proceedings of the 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), Barcelona, Spain, 16–20 June 2013; pp. 278–281. [Google Scholar]
- Wang, X.; Larsson, O.; Platt, D.; Nordlinder, S.; Engquist, I.; Berggren, M.; Crispin, X. An all-printed wireless humidity sensor label. Sens. Actuators B Chem. 2012, 166–167, 556–561. [Google Scholar] [CrossRef]
- Jagtap, S.; Rane, S.; Arbuj, S.; Rane, S.; Gosavi, S. Optical fiber based humidity sensor using Ag decorated ZnO nanorods. Microelectron. Eng. 2017, 187–188, 1–5. [Google Scholar] [CrossRef]
- Eryürek, M.; Tasdemir, Z.; Karadag, Y.; Anand, S.; Kılınç, N.; Alaca, B.E.; Kiraz, A. Integrated Humidity Sensor Based on SU-8 Polymer Microdisk Microresonator. Sens. Actuators B Chem. 2017, 242, 1115–1120. [Google Scholar] [CrossRef]
- Li, Y.; Deng, C.; Yang, M. A novel surface acoustic wave-impedance humidity sensor based on the composite of polyaniline and poly(vinyl alcohol) with a capability of detecting low humidity. Sens. Actuators B Chem. 2012, 165, 7–12. [Google Scholar] [CrossRef]
- Parthibavarman, M.; Hariharan, V.; Sekar, C. High-sensitivity humidity sensor based on SnO2 nanoparticles synthesized by microwave irradiation method. Mater. Sci. Eng. C 2011, 31, 840–844. [Google Scholar] [CrossRef]
- Fernández-Salmerón, J.; Rivadeneyra, A.; Rodríguez, M.A.C.; Capitan-Vallvey, L.F.; Palma, A.J. HF RFID Tag as Humidity Sensor: Two Different Approaches. IEEE Sens. J. 2015, 15, 5726–5733. [Google Scholar] [CrossRef]
- Smith, A.D.; Elgammal, K.; Niklaus, F.; Delin, A.; Fischer, A.C.; Vaziri, S.; Forsberg, F.; Råsander, M.; Hugosson, H.; Bergqvist, L. Resistive graphene humidity sensors with rapid and direct electrical readout. Nanoscale 2015, 7, 19099–19109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Yu, K.; Lei, X.; Guo, B.; Li, C.; Fu, H.; Zhu, Z. Synthesis of the MoS2@CuO heterogeneous structure with improved photocatalysis performance and H2O adsorption analysis. Dalton Trans. 2015, 44, 10438. [Google Scholar] [CrossRef] [PubMed]
- Park, E.U.; Choi, B.I.; Kim, J.C.; Woo, S.B.; Kim, Y.G.; Choi, Y.; Lee, S.W. Correlation between the sensitivity and the hysteresis of humidity sensors based on graphene oxides. Sens. Actuators B Chem. 2018, 258, 255–262. [Google Scholar] [CrossRef]
- Santosh, K.C.; Longo, R.C.; Addou, R.; Wallace, R.M.; Cho, K. Impact of intrinsic atomic defects on the electronic structure of MoS2 monolayers. Nanotechnology 2014, 25, 375703. [Google Scholar]
- Bauskar, D.; Kale, B.B.; Patil, P. Synthesis and humidity sensing properties of ZnSnO3 cubic crystallites. Sens. Actuators B Chem. 2012, 161, 396–400. [Google Scholar] [CrossRef]
- Bi, H.; Yin, K.; Xie, X.; Ji, J.; Wan, S.; Sun, L.; Terrones, M.; Dresselhaus, M.S. Ultrahigh humidity sensitivity of graphene oxide. Sci. Rep. 2013, 3, 2714. [Google Scholar] [CrossRef]
- Tan, Y.; Yu, K.; Yang, T.; Zhang, Q.; Cong, W.; Yin, H.; Zhang, Z.; Chen, Y.; Zhu, Z. The combinations of hollow MoS2 micro@nano-spheres: One-step synthesis, excellent photocatalytic and humidity sensing properties. J. Mater. Chem. C 2014, 2, 25422–25430. [Google Scholar] [CrossRef]
Type | Range (% RH) | Response (s) | Recovery (s) | Sensitivity | Hysteresis | Sensing Material | Reference |
---|---|---|---|---|---|---|---|
Optical | 20~95 | 10 | 60 | 25.2 mV/% RH | Ag–ZnO | [22] | |
Optical | 0~50 | 50 | 50~80 | 78.4 pm/% RH (maximum) | 17% RH | SU–8 | [23] |
SAW | 10~90 | 10 | 20 | 60 kHz/% RH (maximum) | polyaniline & polyvinyl alcohol | [24] | |
Microwave | 5~95 | 32 | 25 | 0~1 | SnO2 nanoparticles | [25] | |
RFID | 15–95 | 3.7 kHz/% RH | Polyimide | [26] |
l | g | w | IDEs Couples | Dc | Dout | Coil turn |
---|---|---|---|---|---|---|
5 | 0.2 | 0.04 | 32 | 0.5 | 25.5 | 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, S.; Lv, W.; Zhang, T.; Tan, Q.; Zhang, W.; Xiong, J. A MoS2 Nanoflakes-Based LC Wireless Passive Humidity Sensor. Sensors 2018, 18, 4466. https://doi.org/10.3390/s18124466
Su S, Lv W, Zhang T, Tan Q, Zhang W, Xiong J. A MoS2 Nanoflakes-Based LC Wireless Passive Humidity Sensor. Sensors. 2018; 18(12):4466. https://doi.org/10.3390/s18124466
Chicago/Turabian StyleSu, Shujing, Wen Lv, Tong Zhang, Qiulin Tan, Wendong Zhang, and Jijun Xiong. 2018. "A MoS2 Nanoflakes-Based LC Wireless Passive Humidity Sensor" Sensors 18, no. 12: 4466. https://doi.org/10.3390/s18124466
APA StyleSu, S., Lv, W., Zhang, T., Tan, Q., Zhang, W., & Xiong, J. (2018). A MoS2 Nanoflakes-Based LC Wireless Passive Humidity Sensor. Sensors, 18(12), 4466. https://doi.org/10.3390/s18124466