Optimization Design Method of a New Stabilized Platform Based on Missile-borne Semi-Strap-down Inertial Navigation System
<p>Block diagram of the overall scheme of the SMNS.</p> "> Figure 2
<p>Arrangement of high precision Semi-Strapdown Inertial Navigation System (SSINS).</p> "> Figure 3
<p>The schematic diagram of the relative position of Micro Inertial Measurement Unit (MIMU).</p> "> Figure 4
<p>Dynamics diagram of the Semi-strap-down Stabilized Platform (SSP).</p> "> Figure 5
<p>Composition diagram of the newly designed SSP.</p> "> Figure 6
<p>Diagram of main forces acting on missile and the SSP.</p> "> Figure 7
<p>The speed of the missile.</p> "> Figure 8
<p>The lift force missile.</p> "> Figure 9
<p>Changing curve of the ratio of <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mi>M</mi> <mi>f</mi> </msub> </mrow> <mo>/</mo> <mrow> <mo stretchy="false">(</mo> <mi>L</mi> </mrow> </mrow> <mo>·</mo> <msub> <mi>F</mi> <mi>s</mi> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> following <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>p</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 10
<p>Curves of the roll angular rate and the roll angle of the SSP change with the quality: (<b>a</b>) A curve of roll angular rate and roll angle vary with time when the quality of the SSP is 1029.97 g; (<b>b</b>) A curve of roll angular rate and roll angle vary with time when the quality of the SSP is 1492.67 g; (<b>c</b>) A curve of roll angular rate and roll angle vary with time when the quality of the SSP is1681.18 g; (<b>d</b>) A curve of roll angular rate and roll angle vary with time when the quality of the SSP is1875.09 g.</p> "> Figure 11
<p>Quality of the SSP after optimization.</p> "> Figure 12
<p>Quality of the SSP before optimization.</p> "> Figure 13
<p>Flight simulator test.</p> "> Figure 14
<p>Feedback angular rate of flight simulation turntable.</p> "> Figure 15
<p>Angular rate in the direction of the roll axis.</p> "> Figure 16
<p>The angular rate of the pitch axis.</p> "> Figure 17
<p>The angular rate of the yaw axis.</p> "> Figure 18
<p>Roll attitude.</p> "> Figure 19
<p>Rolling attitude angle difference.</p> ">
Abstract
:1. Introduction
2. Semi-Strap-down Inertial Navigation System
2.1. The Composition and Working Principle of the SSINS
2.2. The Relative Position of IMU and the Choice of IMU Range.
3. Design Principle and Optimal Quality Selection Method of SSP
3.1. The Introduction of SSP
3.1.1. The Principle Behind the SSP
3.1.2. Composition and Shape Design of SSP
3.2. Dynamic Model of the SSP in Missile-borne Environment
3.2.1. Force Acting on the Missile
3.2.2. Lift Calculation of a Certain Missile
3.2.3. Establishment of Dynamic Model in Missile-Borne Environment
3.3. The Method of Selecting the Best Quality of the SSP
3.3.1. Design Objectives of the SSP
3.3.2. The Relationship between Bearing Friction Torque and Supporting Force on the SSP
3.3.3. The Choice of the Best Quality Interval for the SSP
3.4. Optimization Design of the SSP
4. Test Verification
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pan, J.; Zhang, C.; Niu, Y.; Fan, Z. Accurate calibration for drift of fiber optic gyroscope in multi-position north-seeking phase. Optik-Int. J. Light Electron. Opt. 2014, 125, 7244–7246. [Google Scholar] [CrossRef]
- Zhang, G.; Li, C.; Deng, F.; Chen, J. Research on ballistic missile INS/GNSS/CNS integrated navigation System. Missiles Space Veh. 2004, 4, 11–15. [Google Scholar]
- Xu, M.; Bu, X.; Yu, J.; He, Z. Spinning projectile’s attitude measurement with LW infrared radiation under sea-sky background. Infrared Phys. Technol. 2018, 90, 214–220. [Google Scholar] [CrossRef]
- Chadwick, W. Miss distance of proportional navigation missile with varying velocity. J. Guidance Control Dyn. 2012, 8, 662–666. [Google Scholar] [CrossRef]
- Sasiadek, J.; Hartana, P. GPS/INS Sensor fusion for accurate positioning and navigation based on Kalman Filtering. IFAC Proc. Vol. 2004, 37, 115–120. [Google Scholar] [CrossRef]
- Zeng, Q.; Pan, P.; Liu, J.; Wang, Y.; Liu, S. Fast and accurate target positioning with large viewpoint based on inertial navigation system information. Acta Aeronaut. Astronaut. Sin. 2017, 38, 188–200. [Google Scholar]
- Wu, Y.; Hu, X.; Hu, D.; Li, T.; Lian, J. Strapdown inertial navigation system algorithms based on dual quaternions. IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 110–132. [Google Scholar]
- Li, B.; Wang, M. Research on the error correction algorithm of ballistic missile CNS/INS integrated navigation. Flight Dyn. 2006, 24, 41–44. [Google Scholar]
- Li, J.; Zhao, Y.; Liu, J.; Chen, W. Research on semi-strapdown mems inertial measurement device for flight attitude measurement of high-speed rotating ammunition. Acta Armamentarii 2013, 11, 1398–1403. [Google Scholar]
- Li, J.; Zhu, J.D.; Hou, L.P.; Liu, J. Error compensation technology of semi-strapdown mems inertial measurement system. Key Eng. Mater. 2014, 609, 1213–1218. [Google Scholar] [CrossRef]
- Tao, Y.; Liu, Y.; Dong, J. Recovery procedure and bias shift analysis of MEMS high overload accelerometer due to shock. In Proceedings of the IEEE Chinses Guidance, Navigation and Control Conference, Yantai, China, 8–10 August 2014; pp. 1595–1599. [Google Scholar]
- De Celis, R.; Cadarso, L. Hybridized attitude determination techniques to improve ballistic projectile navigation, guidance and control. Aerosp. Sci. Technol. 2018, 77, 138–148. [Google Scholar] [CrossRef]
- Li, Q.; Sun, X.; Gao, Y.; Qiao, Y. Research on measuring rolling angle of space target based on photoelectric theodolites. J. Grad. Sch. Chin. Acad. Sci. 2006, 23, 765–769. [Google Scholar]
- Yan, X.; Chen, G.; Tian, X. Two-Step adaptive augmented unscented Kalman Filter for roll angles of spinning missiles based on magnetometer measurements. Meas. Control 2018, 51, 73–82. [Google Scholar] [CrossRef]
- Yang, C.; Shi, W.; Chen, W. Correlational inference-based adaptive unscented Kalman Filter with application in GNSS/IMU-integrated navigation. GPS Solut. 2018, 22, 100. [Google Scholar] [CrossRef]
- Zhao, L.; Nie, Q.; Gao, W. A comparison of nonlinear filtering approaches for in-motion alignment of SINS. In Proceedings of the International conference on mechatronics and automation, Harbin, China, 5–8 August 2007; pp. 1310–1315. [Google Scholar]
- Zhang, J.; Li, J.; Zhang, X.; Che, X.; Huang, Y.; Feng, K. Analysis and compensation of modulation angular rate error based on missile-borne rotation semi-strapdown inertial navigation system. Sensors 2018, 18, 1430. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Li, J.; Liu, J. Research on the dynamic model of a partial strapdown platform and the impact analysis of pitching angle and the stability of platform. Acta Armamentarii 2014, 35, 1436–1442. [Google Scholar]
- Zheng, T.; Li, J.; Hu, C.; Jiang, G.; Guo, L.; Qian, H. Optimization design of missile-borne semi-strapdown Platform Based on Nested Structure of Double Bearing. Acta Armamentarii 2018, 39, 724–730. [Google Scholar]
- Hu, X.; Yang, S.; Xiong, F.; Zhang, G. Stability of spinning missile with homing proportional guidance law. Aerosp. Sci. Technol. 2017, 71, 546–555. [Google Scholar] [CrossRef]
- Guang, X.; Gao, Y.; Leung, H.; Liu, P.; Li, G. An autonomous vehicle navigation system based on inertial and visual Sensors. Sensors 2018, 18, 2952. [Google Scholar] [CrossRef]
- Alsalaymeh, A.; Durst, F. Development and testing of a novel single-wire sensor for wide range flow velocity measurements. Meas. Sci. Technol. 2004, 15, 777. [Google Scholar] [CrossRef]
- Åström, K.; Furuta, K. Swinging up a pendulum by energy control. Automatica 2000, 36, 287–295. [Google Scholar] [CrossRef] [Green Version]
- Zayas, V.; Low, S.; Mahin, S. A simple pendulum technique for achieving seismic isolation. Earthq. Spectra 2012, 6, 317–333. [Google Scholar] [CrossRef]
- Chung, C.; Hauser, J. Nonlinear control of a swinging pendulum. Automatica 1995, 31, 851–862. [Google Scholar] [CrossRef]
- Jameson, A. Aerodynamic design via control theory. J. Sci. Comput. 1988, 3, 233–260. [Google Scholar] [CrossRef] [Green Version]
- Caccamise, D.F. An aerodynamic basis for selecting transmitter loads in birds. Wilson Bull. 1985, 97, 306–318. [Google Scholar]
- Sane, S.; Dickinson, M. The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J. Exp. Biol. 2002, 205, 1087. [Google Scholar] [PubMed]
- Spence, D.A. The Lift Coefficient of a Thin, Jet-Flapped Wing. Proc. R. Soc. Lond. A 1956, 238, 46–68. [Google Scholar] [CrossRef]
- Martinezval, R.; Perez, E. Optimum cruise lift coefficient in initial design of jet aircraft. J. Aircr. 1992, 29, 712–714. [Google Scholar] [CrossRef]
- De, G.; Sargeant, A.; Geysel, J. Air friction and rolling resistance during cycling. J. Biomech. 1992, 25, 1090. [Google Scholar]
- Ying, W.; Zhong, Y.; Wang, L. Study on angular motion characteristics of spin-stabilized 2D trajectory correction projectile under the effect of fixed canards. Acta Armamentarii 2017, 38, 1263–1272. [Google Scholar]
- Palm, H.G.; Lang, P.; Strobel, J.; Riesner, H.J.; Friemert, B. Computerized dynamic posturography: the influence of platform stability on postural control. Am. J. Phys. Med. Rehabil. 2014, 93, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Bouyer, J.; Fillon, M. Experimental measurement of the friction torque on hydrodynamic plain journal bearings during start-up. Tribol. Int. 2011, 44, 772–781. [Google Scholar] [CrossRef]
Characteristics | Range | Bias | Random Walk | |
---|---|---|---|---|
Gyroscope (X axis) | ±200°/s | 12°/h | 0.2 | |
Gyroscopes (Y, Z axis) | ±75°/s | 12°/h | 0.2 | |
Accelerometer (X axis) | ±10 g | 0.75 mg | 150 ug/ | |
Accelerometer (Y, Z axis) | ±2.5 g | 0.75 mg | 150 ug/ |
Parameters’ Name | Value |
---|---|
Internal diameter R1 (mm) | 36 |
External diameter R2 (mm) | 40 |
Thickness H (mm) | 4 |
Length L (mm) | 64 |
Width K (mm) | 23.5 |
The density of steel (g/mm3) | 7.85 × 10−3 |
The density of lead (g/mm3) | 11.34 × 10−3 |
Parameters | Value |
---|---|
0.690 m | |
0.258 m | |
0.325 m | |
0.095 m | |
0.0658 m2 | |
0.125 m | |
0.080 m | |
0.1889 rad | |
0.5236 rad |
Parameters’ Name | Value |
---|---|
R1 | 3.9 × 10−7 |
R2 | 1.7 |
S1 | 3.23 × 10−3 |
S2 | 36.5 |
(mm) | 20 |
(kg) | 22 |
(°) | 2 |
(mm/s) | 68 |
N (r/min) | 20 |
(g) | (g) | L (mm) | J (kg∙mm2) | (N·mm) | |
---|---|---|---|---|---|
1029.97 | 518 | 19.16 | 715645.36 | 9.363 | 0.0596 |
1195.17 | 684 | 19.33 | 796875.50 | 10.865 | 0.0653 |
1311.25 | 800 | 19.17 | 858230.70 | 11.921 | 0.0662 |
1370.82 | 859 | 19.1 | 889924.76 | 12.462 | 0.0712 |
1431.32 | 920 | 18.97 | 923317.63 | 13.012 | 0.0732 |
1492.67 | 981 | 18.69 | 957770.86 | 13.570 | 0.0753 |
1554.81 | 1043 | 18.55 | 993279.38 | 14.135 | 0.0774 |
1617.67 | 1106 | 18.32 | 1029732.48 | 14.706 | 0.0795 |
1681.18 | 1170 | 18.01 | 1067066.03 | 15.283 | 0.0813 |
1745.3 | 1234 | 17.65 | 1105219.02 | 15.866 | 0.0816 |
1809.95 | 1298 | 17.41 | 1144145.55 | 16.454 | 0.0837 |
1875.09 | 1363 | 17.18 | 1183755.35 | 17.046 | 0.0858 |
(g) | The Amplitude of the Angular Rate (°/s) | The Angle of Magnitude (°) |
---|---|---|
1029.97 | 5.277425125 | 0.6913055894 |
1195.17 | 5.401864992 | 0.6841432462 |
1311.25 | 4.742293892 | 0.5968631809 |
1492.67 | 4.444337347 | 0.55772058380 |
1617.67 | 4.789094705 | 0.6084000808 |
1681.18 | 4.752837345 | 0.6082058380 |
1745.30 | 4.464310826 | 0.5752954076 |
1875.09 | 4.621437347 | 0.6033058380 |
Position Accuracy (°) | Rotation Rate Accuracy (°/s) | Rotation Rate (°/s) | ||
---|---|---|---|---|
Inner Frame | Middle Frame | Outer Frame | ||
0.001 | 0.001 | 0.001–12,000 | 0.001–400 | 0.001–400 |
Characteristics | Range | Bias | Random Walk |
---|---|---|---|
Gyroscope (X axis) | ±50°/s | 0.12°/h | 0.017 |
Gyroscopes (Y, Z axis) | ±25°/s | 0.1°/h | 0.015 |
Accelerometer (X axis) | ±10 g | 0.75 mg | 150 ug/ |
Accelerometer (Y, Z axis) | ±0.85 g | 0.75 mg | 50 ug/ |
Pitch | Yaw | Roll | Rotating Mechanism | |
---|---|---|---|---|
Experiment 1 | +2 deg | 0 deg | 20 r/s | Before |
Experiment 2 | +2 deg | 0 deg | 20 r/s | After |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Jing, Z.; Zhang, X.; Zhang, J.; Li, J.; Gao, S.; Zheng, T. Optimization Design Method of a New Stabilized Platform Based on Missile-borne Semi-Strap-down Inertial Navigation System. Sensors 2018, 18, 4412. https://doi.org/10.3390/s18124412
Li J, Jing Z, Zhang X, Zhang J, Li J, Gao S, Zheng T. Optimization Design Method of a New Stabilized Platform Based on Missile-borne Semi-Strap-down Inertial Navigation System. Sensors. 2018; 18(12):4412. https://doi.org/10.3390/s18124412
Chicago/Turabian StyleLi, Jie, Zhengyao Jing, Xi Zhang, Jiayu Zhang, Jinqiang Li, Shiyao Gao, and Tao Zheng. 2018. "Optimization Design Method of a New Stabilized Platform Based on Missile-borne Semi-Strap-down Inertial Navigation System" Sensors 18, no. 12: 4412. https://doi.org/10.3390/s18124412
APA StyleLi, J., Jing, Z., Zhang, X., Zhang, J., Li, J., Gao, S., & Zheng, T. (2018). Optimization Design Method of a New Stabilized Platform Based on Missile-borne Semi-Strap-down Inertial Navigation System. Sensors, 18(12), 4412. https://doi.org/10.3390/s18124412