Long-Range Drone Detection of 24 G FMCW Radar with E-plane Sectoral Horn Array
<p>Radar system scenario with the two-element sectoral horn antenna array.</p> "> Figure 2
<p>Illustration of the 3D phase shifts.</p> "> Figure 3
<p>Simplified version of <a href="#sensors-18-04171-f002" class="html-fig">Figure 2</a>.</p> "> Figure 4
<p>Illustration of Tx lens antenna, (<b>a</b>) front view; (<b>b</b>) side view; (<b>c</b>) back view.</p> "> Figure 5
<p>Simulated Tx Lens Horn Antenna Radiation Pattern.</p> "> Figure 6
<p>Illustration of the Rx antennas, (<b>a</b>) the implemented E-plane sectoral horn antenna; (<b>b</b>) two-element Rx antenna array with the distance <span class="html-italic">d</span> between the centers of the individual antennas.</p> "> Figure 7
<p>Measured Rx E-plane sectoral horn antenna radiation pattern (normalized).</p> "> Figure 8
<p>Block diagram of the implemented 24-GHz transceiver and Intermediate Frequency (IF) module.</p> "> Figure 9
<p>(<b>a</b>) Photograph of Adopted Analog Devices evaluation board; (<b>b</b>) layout of the Analog Devices evaluation board; (<b>c</b>) photograph of the designed 24-GHz power amplifier (PA); (<b>d</b>) layout of the designed 24-GHz power amplifier (PA).</p> "> Figure 10
<p>Submodules of IF, (<b>a</b>) high-pass filter; (<b>b</b>) coaxial cables; (<b>c</b>) voltage gain control amplifier (VGA).</p> "> Figure 11
<p>Performance of the high-pass filter.</p> "> Figure 12
<p>Photograph of the developed data-logging platform.</p> "> Figure 13
<p>(<b>a</b>) Illustration of the experimental set up; (<b>b</b>) photograph of the experiments.</p> "> Figure 14
<p>Illustration of the designed flight paths for the drones, (<b>a</b>) horizontal flight in Path 1 for Experiment 1, and vertical flight in Path 2 for Experiment 2; (<b>b</b>) two vertical paths for Experiment 3.</p> "> Figure 15
<p>Photographs of drones used in the experiments, (<b>a</b>) quadcopter drone 1 (QD1); (<b>b</b>) quadcopter drone 2 (QD2).</p> "> Figure 16
<p>Illustration of the detection results, (<b>a</b>) without the clutter mitigation approach; and (<b>b</b>) with the clutter mitigation approach.</p> "> Figure 17
<p>Illustration of one frame of detection results of Experiment 1, (<b>a</b>) range-Doppler map; (<b>b</b>) range-angle map.</p> "> Figure 17 Cont.
<p>Illustration of one frame of detection results of Experiment 1, (<b>a</b>) range-Doppler map; (<b>b</b>) range-angle map.</p> "> Figure 18
<p>Illustration of one frame of detection results of Experiment 2, (<b>a</b>) range-Doppler map; (<b>b</b>) range-angle map.</p> "> Figure 19
<p>Illustration of one frame of detection results of Experiment 3, (<b>a</b>) range-Doppler map; (<b>b</b>) range-angle map.</p> "> Figure 20
<p>Estimated flight paths, (<b>a</b>) estimated path 1; (<b>b</b>) estimated path 2; (<b>c</b>) estimated path 3; (<b>d</b>) estimated path 4.</p> ">
Abstract
:1. Introduction
2. System Model
3. Conventional Algorithms
3.1. Conventional 1D Auto-Correlation Matrix
3.2. Conventional 2D Auto-Correlation Matrix
4. Proposed Algorithm
4.1. Proposed 3D Subspace-Based Algorithm
4.2. Comparision with the Previous Works
5. Implementation of 24-GHz FMCW Drone Detection Radar
5.1. Tx Lens Antenna and Rx Sectoral Horn Antennas
5.2. 24-GHz Transceiver and IF
5.3. Data-Logging Platfrom
6. Experiments
6.1. Stationary Clutter Mitigation
6.2. Experiments Results
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ding, G.; Wu, Q.; Zhang, L.; Lin, Y.; Tsiftsis, T.A.; Yao, Y. An Amateur Drone Surveillance System Based on the Cognitive Internet of Things. IEEE Commun. Mag. 2018, 56, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Trundle, S.S.; Slavin, A.J. DRONE DETECTION SYSTEMS. U.S. Patent 2017/0092.138A1, 30 March 2017. [Google Scholar]
- Moses, A.; Rutherford, M.J.; Valavanis, K.P. Radar-based detection and identification for miniature air vehicles. In Proceedings of the 2011 IEEE International Conference on Control Applications (CCA), Denver, CO, USA, 28–30 September 2011; pp. 933–940. [Google Scholar] [CrossRef]
- Mezei, J.; Fiaska, V.; Molnár, A. Drone sound detection. In Proceedings of the 2015 16th IEEE International Symposium on Computational Intelligence and Informatics (CINTI), Budapest, Hungary, 19–21 November 2015; pp. 333–338. [Google Scholar] [CrossRef]
- Mezei, J.; Molnár, A. Drone sound detection by correlation. In Proceedings of the 2016 IEEE 11th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, 12–14 May 2016; pp. 509–518. [Google Scholar] [CrossRef]
- Kim, J.; Park, C.; Ahn, J.; Ko, Y.; Park, J.; Gallagher, J.C. In Proceedings of the Real-time UAV sound detection and analysis system. 2017 IEEE Sensors Applications Symposium (SAS), Glassboro, NJ, USA, 13–15 March 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Busset, J.; Perrodin, F.; Wellig, P.; Ott, B.; Heutschi, K.; Rühl, T.; Nussbaumer, T. Detection and tracking of drones using advanced acoustic cameras. Proc. SPIE 2015, 9647, 96470F. [Google Scholar] [CrossRef]
- Liu, H.; Wei, Z.; Chen, Y.; Pan, J.; Lin, L.; Ren, Y. Drone Detection Based on an Audio-Assisted Camera Array. In Proceedings of the 2017 IEEE Third International Conference on Multimedia Big Data (BigMM), Laguna Hills, CA, USA, 19–21 April 2017; pp. 402–406. [Google Scholar] [CrossRef]
- Park, J.; Kim, D.H.; Shin, Y.S.; Lee, S. A comparison of convolutional object detectors for real-time drone tracking using a PTZ camera. In Proceedings of the 2017 17th International Conference on Control, Automation and Systems (ICCAS), Jeju, Korea, 18–21 October 2017; pp. 696–699. [Google Scholar]
- Oh, B.; Guo, X.; Wan, F.; Toh, K.; Lin, Z. An EMD-based micro-Doppler signature analysis for mini-UAV blade flash reconstruction. In Proceedings of the 2017 22nd International Conference on Digital Signal Processing (DSP), London, UK, 23–25 August 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Chen, V.C.; Li, F.; Ho, S.-S.; Wechsler, H. Micro-Doppler effect in radar: Phenomenon, model, and simulation study. IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 2–21. [Google Scholar] [CrossRef]
- Kim, Y.; Nazaroff, M.; Oh, D. Extraction of drone micro-Doppler characteristics using high resolution time-frequency transforms. Microw. Opt. Technol. Lett. 2018, 60, 2949–2954. [Google Scholar] [CrossRef]
- Park, J.; Rios, J.; Moon, T.; Kim, Y. Micro-Doppler based classification of human activities on water via transfer learning of convolutional neural networks. Sensors 2016, 16, 1990. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Robertson, D.A. Millimeter-wave micro-Doppler measurements of small UAVs. In Proceedings of the SPIE Radar Sensor Technology XXI, 101880T, Anaheim, CA, USA, 17 April 2017; Ranney, K.I., Doerry, A., Eds.; SPIE: Bellingham, WA, USA, 2017; Volume 10188. [Google Scholar] [CrossRef]
- Oh, B.; Guo, X.; Wan, F.; Toh, K.; Lin, Z. Micro-Doppler Mini-UAV Classification Using Empirical-Mode Decomposition Features. IEEE Geosci. Remote Sens. Lett. 2018, 15, 227–231. [Google Scholar] [CrossRef]
- Fioranelli, F.; Ritchie, M.; Griffiths, H.; Borrion, H. Classification of loaded/unloaded micro-drones using multistatic radar. Electron. Lett. 2015, 51, 1813–1815. [Google Scholar] [CrossRef] [Green Version]
- Torvik, B.; Olsen, K.E.; Griffiths, H. Classification of Birds and UAVs Based on Radar Polarimetry. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1305–1309. [Google Scholar] [CrossRef]
- Shin, D.; Jung, D.; Kim, D.; Ham, J.; Park, S. A Distributed FMCW Radar System Based on Fiber-Optic Links for Small Drone Detection. IEEE Trans. Instrum. Meas. 2017, 66, 340–347. [Google Scholar] [CrossRef]
- Rudge, A.W.; Milne, K.; Olver, A.D.; Knight, P. Chapter 7.7 Simple horn antenna. In The Handbook of Antenna Design; The Institution of Engineering and Technology: Stevenage, UK, 1982; Volume 1. [Google Scholar]
- Pollock, B.; Goodman, N.A. Structured de-chirp for compressive sampling of LFM waveforms. In Proceedings of the 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hoboken, NJ, USA, 17–20 June 2012; pp. 37–40. [Google Scholar] [CrossRef]
- Oh, D.; Ju, Y.; Nam, H.; Lee, J. Dual smoothing DOA estimation of two-channel FMCW radar. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 904–917. [Google Scholar] [CrossRef]
- Winkler, V. Range Doppler detection for automotive FMCW radars. In Proceedings of the 2007 European Radar Conference, Munich, Germany, 10–12 October 2007; pp. 166–169. [Google Scholar]
- Li, X.; Pahlavan, K. Super-resolution TOA estimation with diversity for indoor geolocation. IEEE Trans. Wirel. Commun. 2004, 3, 224–234. [Google Scholar] [CrossRef]
- Oh, D.; Lee, J. Low-Complexity Range-Azimuth FMCW Radar Sensor Using Joint Angle and Delay Estimation Without SVD and EVD. IEEE Sens. J. 2015, 15, 4799–4811. [Google Scholar] [CrossRef]
- Schmidt, R.O. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef]
- Roy, R.; Kailath, T. ESPRlT-Estimation of Signal Parameters via Rotational in variance Techniques. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 984–995. [Google Scholar] [CrossRef]
- Wax, M.; Kailath, T. Detection of signals by information theoretic criteria. IEEE Trans. Acoust. Speech Signal Process. 1985, 33, 387–392. [Google Scholar] [CrossRef]
- Brooks, D. Differential Signals: Rules to Live By. Available online: https://www.ieee.li/pdf/essay/differential_signals.pdf (accessed on 9 November 2018).
- Pinkle, C. The Basics: Single-Ended and Differential Signaling. Available online: https://www.allaboutcircuits.com/technical-articles/the-why-and-how-of-differential-signaling (accessed on 9 November 2018).
- Tivive, F.H.C.; Bouzerdoum, A.; Amin, M.G. A Subspace Projection Approach for Wall Clutter Mitigation in Through-the-Wall Radar Imaging. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2108–2122. [Google Scholar] [CrossRef]
Function of System | Radar System | Parameters (Dimensions) | Detection Range | |
---|---|---|---|---|
[14] | Drone calissfication | 94 GHz FMCW | Range (1D) | 120 m |
[15] | Drone calissfication | 9.7 GHz CW | Range (1D) | 3~150 m |
[16] | Drone calissfication | 2.4 GHz Pulsed Radar | Range (1D) | ~60 m |
[17] | Drone calissfication | BirdRad radar | Range (1D) | 300~400 m |
[18] | Drone detection | 24 GHz FMCW | Range/Doppler (2D) | 500 m |
This work | Drone detection | 24 GHz FMCW | Range/Azimuth/Doppler (3D) | Up to 1 km |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, B.; Oh, D.; Kim, S.; Chong, J.-W.; Li, Y.-C. Long-Range Drone Detection of 24 G FMCW Radar with E-plane Sectoral Horn Array. Sensors 2018, 18, 4171. https://doi.org/10.3390/s18124171
Choi B, Oh D, Kim S, Chong J-W, Li Y-C. Long-Range Drone Detection of 24 G FMCW Radar with E-plane Sectoral Horn Array. Sensors. 2018; 18(12):4171. https://doi.org/10.3390/s18124171
Chicago/Turabian StyleChoi, Byunggil, Daegun Oh, Sunwoo Kim, Jong-Wha Chong, and Ying-Chun Li. 2018. "Long-Range Drone Detection of 24 G FMCW Radar with E-plane Sectoral Horn Array" Sensors 18, no. 12: 4171. https://doi.org/10.3390/s18124171
APA StyleChoi, B., Oh, D., Kim, S., Chong, J. -W., & Li, Y. -C. (2018). Long-Range Drone Detection of 24 G FMCW Radar with E-plane Sectoral Horn Array. Sensors, 18(12), 4171. https://doi.org/10.3390/s18124171