On the Performance of an Aerosol Electrometer with Enhanced Detection Limit
<p>Schematics diagram of the AE.</p> "> Figure 2
<p>The schematics diagram of the FC and electrometer.</p> "> Figure 3
<p>The schematics diagram of electrometer circuit.</p> "> Figure 4
<p>Schematics diagram of the experiment setup for evaluating the AE. (<b>a</b>) The experiment setup for comparing the designed AE and the TSI-3068B; (<b>b</b>) the experiment setup for evaluating the particle detection efficiency of the designed AE.</p> "> Figure 5
<p>The calibration scheme of AE at range of −50 pA to +50 pA.</p> "> Figure 6
<p>Results of linearity calibration.</p> "> Figure 7
<p>Typical zero offset due to temperature variations of 1 GΩ, 10 GΩ and 100 GΩ.</p> "> Figure 8
<p>The Noise of the three AEs after achieving thermal stability. (<b>a</b>) The AE with 1 GΩ feedback resistance; (<b>b</b>) the AE with 10 GΩ feedback resistance; (<b>c</b>) the AE with 100 GΩ feedback resistance.</p> "> Figure 8 Cont.
<p>The Noise of the three AEs after achieving thermal stability. (<b>a</b>) The AE with 1 GΩ feedback resistance; (<b>b</b>) the AE with 10 GΩ feedback resistance; (<b>c</b>) the AE with 100 GΩ feedback resistance.</p> "> Figure 9
<p>Results of the designed AE compared to the TSI-3068. (<b>a</b>) The measurement results; (<b>b</b>) the correlation.</p> "> Figure 10
<p>Results of evaluating the particle detection efficiency. (<b>a</b>) The electric current of the designed AE and the TSI-3068B; (<b>b</b>) the results of the particle detection efficiency.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Modeling
2.2. Experiment Setup for Evaluating the AE
3. Results
3.1. Results of Calibration
3.2. Noise of the Aerosol Electrometer
3.3. Particle Detection Efficiency of the AE
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Takegawa, N.; Iida, K.; Sakurai, H. Modification and laboratory evaluation of a TSI ultrafine condensation particle counter (Model 3776) for airborne measurements. Aerosol Sci. Technol. 2016, 51, 235–245. [Google Scholar] [CrossRef]
- Fletcher, R.A.; Mulholland, G.W.; Winchester, M.R. Calibration of a Condensation Particle Counter Using a NIST Traceable Method. Aerosol Sci. Technol. 2009, 43, 425–441. [Google Scholar] [CrossRef] [Green Version]
- Barmpounis, K.; Ranjithkumar, A.; Schmidt-Ott, A. Enhancing the Detection Efficiency of Condensation Particle Counters for Sub-2 nm Particles. J. Aerosol Sci. 2018, 117, 44–53. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Wang, X.; Horn, H.G. Calibration of Condensation Particle Counters for Legislated Vehicle Number Emission Measurements. Aerosol Sci. Technol. 2009, 43, 1164–1173. [Google Scholar] [CrossRef] [Green Version]
- Mora, J.F.D.L.; Perez-Lorenzo, L.J.; Arranz, G.; Amo-Gonzalez, M.; Burtscher, H. Fast high-resolution nanoDMA measurements with a 25 ms response time electrometer. Aerosol Sci. Technol. 2017, 51, 724–734. [Google Scholar] [CrossRef]
- Winklmayr, W.; Reischl, G.P.; Lindner, A.O. A new electromobility spectrometer for the measurement of aerosol size distributions in the size range from 1 to 1000 nm. J. Aerosol Sci. 1991, 22, 289–296. [Google Scholar] [CrossRef]
- Hillemann, L.; Zschoppe, A.; Caldow, R. An ultrafine particle monitor for size-resolved number concentration measurements in atmospheric aerosols. J. Aerosol Sci. 2014, 68, 14–24. [Google Scholar] [CrossRef]
- Seol, K.S.; Tsutatani, Y.; Camata, R.P.; Yabumoto, J.; Isomura, S.; Okada, Y.; Okuyama, K.; Takeuchi, K. A differential mobility analyzer and a Faraday cup electrometer for operation at 200–930 Pa pressure. J. Aerosol Sci. 2000, 31, 1389–1395. [Google Scholar] [CrossRef]
- Kausik, S.S.; Dutta, P.; Chakraborty, M. Study of Charge Distribution in a Dust Beam Using a Faraday Cup Assembly. Phys. Lett. A 2008, 372, 860–865. [Google Scholar] [CrossRef]
- Intra, P.; Tippayawong, N. Development and Evaluation of a Faraday Cup Electrometer for Measuring and Sampling Atmospheric Ions and Charged Aerosols. Part. Sci. Technol. 2015, 33, 257–263. [Google Scholar] [CrossRef]
- Intra, P.; Tippayawong, N. Measurements of ion current from a corona-needle charger using a Faraday cup electrometer. Chiang Mai J. Sci. 2009, 36, 110–119. [Google Scholar]
- Yang, S.; Lee, G.W.M. Filtration characteristics of a fibrous filter pretreated with anionic surfactants for monodisperse solid aerosols. J. Aerosol Sci. 2005, 36, 419–437. [Google Scholar] [CrossRef]
- Ehara, K.; Sakurai, H. Evaluation of uncertainties in femtoampere current measurement for the number concentration standard of aerosol nanoparticles. Meas. Sci. Technol. 2011, 22, 024009. [Google Scholar]
- Järvinen, A.; Keskinen, J.; Yliojanperä, J. Extending the Faraday cup aerosol electrometer based calibration method up to 5 µm. Aerosol Sci. Technol. 2018, 52, 828–840. [Google Scholar] [CrossRef]
- Högström, R.; Yliojanperä, J.; Rostedt, A. Validating the single charged aerosol reference (SCAR) as a traceable particle number concentration standard for 10 nm to 500 nm aerosol particles. Metrologia 2011, 48, 426. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, T.; Zhang, J. Design and Evaluation of an Aerosol Electrometer with Low Noise and a Wide Dynamic Range. Sensors 2018, 18, 1614. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, E.J. Study of the Theoretical and Practical Limitations of Low-Current Amplification by Transistorized Current-Feedback DC Electrometers; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1967.
- Keithley Instruments, Inc. Low Level Measurements Handbook, 7th ed.; Keithley Instruments, Inc.: Cleveland, OH, USA, 2014; pp. 2–42. [Google Scholar]
- Rao, Y.S. Studies on temperature coefficient of resistance (TCR) of polymer thick film resistors. Microelectron. Int. 2008, 25, 33–36. [Google Scholar]
- Yu, T.; Yang, Y.; Liu, J.; Gui, H.; Zhang, J.; Cheng, Y.; Du, P.; Wang, J.; Wang, W.; Wang, H. Design and evaluation of a unipolar aerosol particle charger with built-in electrostatic precipitator. Instrum. Sci. Technol. 2018, 46, 326–347. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Yu, T.; Zhang, J.; Wang, J.; Wang, W.; Gui, H.; Liu, J. On the Performance of an Aerosol Electrometer with Enhanced Detection Limit. Sensors 2018, 18, 3889. https://doi.org/10.3390/s18113889
Yang Y, Yu T, Zhang J, Wang J, Wang W, Gui H, Liu J. On the Performance of an Aerosol Electrometer with Enhanced Detection Limit. Sensors. 2018; 18(11):3889. https://doi.org/10.3390/s18113889
Chicago/Turabian StyleYang, Yixin, Tongzhu Yu, Jiaoshi Zhang, Jian Wang, Wenyu Wang, Huaqiao Gui, and Jianguo Liu. 2018. "On the Performance of an Aerosol Electrometer with Enhanced Detection Limit" Sensors 18, no. 11: 3889. https://doi.org/10.3390/s18113889
APA StyleYang, Y., Yu, T., Zhang, J., Wang, J., Wang, W., Gui, H., & Liu, J. (2018). On the Performance of an Aerosol Electrometer with Enhanced Detection Limit. Sensors, 18(11), 3889. https://doi.org/10.3390/s18113889