Integrable Near-Infrared Photodetectors Based on Hybrid Erbium/Silicon Junctions
<p>(<b>a</b>) Schematic cross-sectional view of the Erbium/Si Schottky PD under illumination; (<b>b</b>) optical image of a sample device; (<b>c</b>) the IPE mechanism in a Er/p-Si Schottky junction, where E<sub>F</sub> is the Fermi energy of the metal, E<sub>V</sub> is the Si valence band energy, and hν-Φ<sub>B</sub> is the difference between the photon energy and the Schottky barrier; (<b>d</b>) SEM image of the device.</p> "> Figure 2
<p>(<b>a</b>) Real (blue) and imaginary (red) refractive index of sputtered Er measured by ellipsometric characterization; (<b>b</b>) simulated reflectivity at both Si/Cu and Si/Er interface for normal incidence.</p> "> Figure 3
<p>(<b>a</b>) I-V characteristics of Er/p-Si PD at room temperature; (<b>b</b>) potential barrier height as a function of reverse bias.</p> "> Figure 4
<p>Experimental setup for opto-electronic experimental measurements.</p> "> Figure 5
<p>(<b>a</b>) Responsivity vs wavelength at different reverse biases; (<b>b</b>) NEP (red crosses) and total noise current in (blue dots) at different reverse biases.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Erbium Deposition
2.2. Erbium Ellipsometric Characterization
2.3. Electrical Characterization
2.4. Optoelectronic Characterization
3. Results and Discussion
3.1. Fabrication and Theoretical Background
3.2. Erbium Charactherization
3.3. Electrical Charactherization
3.4. Electro-Optical Characterization
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shen, B.; Wang, P.; Polson, R.; Menon, R. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint. Nature 2015, 9, 378–382. [Google Scholar] [CrossRef]
- Kintaka, K.; Kita, Y.; Shimizu, K.; Matsuoka, H.; Ura, S.; Nishii, J. Cavity-resonator-integrated grating input/output coupler for high-efficiency vertical coupling with a small aperture. Opt. Express 2010, 35, 1989–1991. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; Song, J.F.; Tao, S.H.; Yu, M.B.; Lo, G.Q.; Kwong, D.L. Low Loss (~6.45 dB/cm) Sub-Micron Polycrystalline Silicon Waveguide Integrated with Efficient SiON Waveguide Coupler. Opt. Express 2008, 16, 6425–6432. [Google Scholar] [CrossRef] [PubMed]
- Omran, H.; Medhat, M.; Mortada, B.; Saadany, B.; Khalil, D. Fully Integrated Mach-Zhender MEMS Interferometer with Two Complementary Outputs. IEEE J. Quantum Electron. 2012, 48, 244–251. [Google Scholar] [CrossRef]
- Liu, A.; Rong, H.; Jones, R.; Cohen, O.; Hak, D.; Paniccia, M. Optical Amplification and Lasing by Stimulated Raman Scattering in Silicon Waveguides. J. Light. Technol. 2006, 24, 1440–1455. [Google Scholar] [CrossRef]
- Wang, J.; Lee, S. Ge-Photodetectors for Si-Based Optoelectronic Integration. Sensors 2011, 11, 696–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalali, B.; Fathpour, S. Silicon Photonics. J. Lightwave Technol. 2006, 24, 4600–4615. [Google Scholar] [CrossRef]
- Rowe, L.K.; Elsey, M.; Tarr, N.G.; Knights, A.P.; Post, E. CMOS-compatible optical rib waveguides defined by local oxidation of silicon. Electron. Lett. 2007, 43, 392–393. [Google Scholar] [CrossRef]
- Vivien, L.; Pascal, D.; Lardenois, S.; Marris-Morini, D.; Cassan, E.; Grillot, F.; Laval, S.; Fédéli, J.M.; El Melhaoui, L. Light Injection in SOI Microwaveguides Using High-Efficiency Grating Couplers. J. Light. Technol. 2006, 24, 3810–3815. [Google Scholar] [CrossRef]
- Xu, Q.; Manipatruni, S.; Schmidt, B.; Shakya, J.; Lipson, M. 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Opt. Express 2007, 15, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Michael, C.P.; Borselli, M.; Johnson, T.J.; Chrystal, C.; Painter, O. An optical fiber-taper probe for wafer-scale microphotonic device characterization. Opt. Express 2007, 15, 4745–4752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, A.; Liao, L.; Rubin, D.; Nguyen, H.; Ciftcioglu, B.; Chetrit, Y.; Izhaky, N.; Paniccia, M. High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express 2007, 15, 660–668. [Google Scholar] [CrossRef] [PubMed]
- Eng, P.C.; Song, S.; Ping, B. State-of-the-art photodetectors for optoelectronic integration at telecommunication wavelength. Nanophotonics 2015, 4, 277–302. [Google Scholar] [CrossRef] [Green Version]
- Michel, J.; Liu, J.; Kimerling, L.C. High-performance Ge-on-Si photodetectors. Nat. Photonics 2010, 4, 527–534. [Google Scholar] [CrossRef]
- Alduino, A. Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers. In Proceedings of the IEEE Hot Chips 22 Symposium (HCS), Stanford, CA, USA, 22–24 August 2010; pp. 1–29. [Google Scholar] [CrossRef]
- Narasimha, A.; Analui, B.; Balmater, E.; Clark, A.; Gal, T.; Guckenberger, D.; Gutierrez, S.; Harrison, M.; Koumans, R.; Kucharski, D.; et al. A 40-Gb/s QSFP Optoelectronic Transceiver in a 0.13 µm CMOS Silicon-on-Insulator Technology. In Proceedings of the Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, San Diego, CA, USA, 24–28 February 2008. [Google Scholar]
- Harame, D.L.; Koester, S.J.; Freeman, G.; Cottrel, P.; Rim, K.; Dehlinger, G.; Ahlgren, D.; Dunn, J.S.; Greenberg, D.; Joseph, A.; et al. The revolution in SiGe: Impact on device electronics. Appl. Surf. Sci. 2004, 224, 9–17. [Google Scholar] [CrossRef]
- Alloatti, L.; Srinivasan, S.A.; Orcutt, J.S.; Ram, R.J. Waveguide-coupled detector in zero-change complementary metal-oxide-semiconductor. Appl. Phys. Lett. 2015, 107, 041104. [Google Scholar] [CrossRef]
- Meng, H.; Atabaki, A.; Orcutt, J.S.; Ram, R.J. Sub-bandgap polysilicon photodetector in zero-change CMOS process for telecommunication wavelength. Opt. Express 2015, 23, 32643–32653. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Wade, M.T.; Lee, Y.; Orcutt, J.S.; Alloatti, L.; Georgas, M.S.; Waterman, A.S.; Shainline, J.M.; Avizienis, R.R.; Lin, S.; et al. Single-chip microprocessor that communicates directly using light. Nature 2015, 528, 534–538. [Google Scholar] [CrossRef] [Green Version]
- Mcdonald, S.; Konstantatis, G.; Zhang, S.; Cyr, P.W.; Klem, E.J.D.; Levina, L.; Sargent, E.H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 2005, 4, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Goossens, S.; Navickaite, G.; Monasterio, C.; Gupta, S.; Piqueras, J.J.; Perez, R.; Burwell, G.; Nikitskiy, I.; Lasanta, T.; Galan, T.; et al. Broadband image sensor array based on graphene-CMOS integration. Nat. Photonics 2017, 11, 366–371. [Google Scholar] [CrossRef]
- Casalino, M.; Coppola, G.; De La Rue, R.M.; Logan, D.F. State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths. Laser Photonics Rev. 2016, 10, 895–921. [Google Scholar] [CrossRef] [Green Version]
- Casalino, M. Internal Photoemission Theory: Comments and Theoretical Limitations on the Performance of Near-Infrared Silicon Schottky Photodetectors. IEEE J. Quantum Elect. 2016, 52, 4000110. [Google Scholar] [CrossRef]
- Zhu, S.; Yu, M.B.; Lo, G.Q.; Kwong, D.L. Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications. Appl. Phys. Lett. 2008, 92, 081103. [Google Scholar] [CrossRef]
- Casalino, M.; Iodice, M.; Sirleto, L.; Rendina, I.; Coppola, G. Low dark current silicon-on-insulator waveguide metal-semiconductor-metal photodetector based on internal photoemission effect at 1550 nm. J. Appl. Phys. 2013, 114, 153103. [Google Scholar] [CrossRef]
- Berini, P. Surface plasmon photodetectors and their applications. Laser Photonics Rev. 2013, 8, 197–220. [Google Scholar] [CrossRef]
- Goykhman, I.; Sassi, U.; Desiatov, B.; Mazurski, N.; Milana, S.; De Fazio, D.; Eiden, A.; Khurgin, J.; Shappir, J.; Levy, U.; et al. On-Chip Integrated, Silicon-Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain. Nanoletters 2016, 16, 3005–3013. [Google Scholar] [CrossRef] [PubMed]
- Casalino, M.; Sirleto, L.; Moretti, L.; Gioffrè, M.; Coppola, G.; Rendina, I. Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 micron: Fabrication and characterization. Appl. Phys. Lett. 2008, 92, 251104. [Google Scholar] [CrossRef]
- Castagna, M.E.; Coffa, S.; Carestia, L.; Messian, A.; Buongiorno, C. Quantum Dot Materials and Devices for Light Emission in Silicon. In Proceedings of the 32nd European Solid-State Device Research Conference, Firenze, Italy, 24–26 September 2002; pp. 439–442. [Google Scholar] [CrossRef]
- Jang, M.; Kim, Y.; Shin, J.; Lee, S. Formation of erbium-silicide as source and drain for decananometer-scale Schottky barrier metal-oxide-semiconductor field-effect transistors. Mater. Sci. Eng. B 2004, 114, 51–55. [Google Scholar] [CrossRef]
- Kimata, M.; Ueno, M.; Yagi, H.; Shiraishi, T.; Kawai, M.; Endo, K.; Kosasayama, Y.; Sone, T.; Ozeki, T.; Tsubouchi, N. PtSi Schottky-barrier infrared focal plane arrays. Opto-Electron. Rev. 1998, 6, 1–10. [Google Scholar]
- Casalino, M.; Sirleto, L.; Moretti, L.; Gioffrè, M.; Coppola, G.; Iodice, M.; Rendina, I. Back-Illuminated Silicon Resonant Cavity Enhanced Photodetector at 1550 nm. Phys. E Low-Dimens. Syst. Nanostruct. 2009, 41, 1097–1101. [Google Scholar] [CrossRef]
- Casalino, M.; Russo, R.; Russo, C.; Ciajolo, A.; Di Gennaro, E.; Iodice, M.; Coppola, G. Free-space graphgene/silicon photodetectors aerating at 2 μm. ACS Photonics 2018. [Google Scholar] [CrossRef]
- Frederick, W. Optical Properties of Solids; Academic Press: Cambridge, MA, USA, 1972; ISBN 9781483220765. [Google Scholar]
- Hecht, E. Optics, 4th ed.; Addison-Wesley: Boston, MA, USA, 2002; ISBN 0321188780. [Google Scholar]
- Bruggeman, D.A.G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. 1935, 416, 636–664. [Google Scholar] [CrossRef]
- Christine, S.; Berini, P. Thin-Film Schottky Barrier Photodetector Models. IEEE J. Quantum Elect. 2010, 46, 633. [Google Scholar] [CrossRef]
- Casalino, M. Design of Resonant Cavity Enhanced Schottky Graphene/Silicon Photodetectors at 1550 nm. J. Light. Techno. 2018, 36, 1766–1774. [Google Scholar] [CrossRef]
- Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006; ISBN 978-0-471-14323-9. [Google Scholar]
- Silvano, D. Photodetectors: Devices, Circuits and Applications; Prentice Hall: Upper Saddle River, NJ, USA, 2001; Volume 12, ISBN 0-13-020337-8. [Google Scholar]
- Llopis, O.; Azaizia, S.; Saleh, K.; Ali Slimane, A.; Fernandez, A. Photodiode 1/f noise and other types of less known baseband noises in optical telecommunications devices. In Proceedings of the Conference: Noise and Fluctuations (ICNF), Montpellier, France, 24–28 June 2013. [Google Scholar] [CrossRef]
- Zhu, M.; Li, X.; Li, X.; Zang, X.; Zhen, Z.; Xie, D.; Fang, Y.; Zhu, H. Schottky diode characteristics and 1/f noise of high sensitivity reduced graphene oxide/Si heterojunction photodetector. J. Appl. Phys. 2016, 119, 124303. [Google Scholar] [CrossRef]
- Casalino, M.; Sassi, U.; Goykhman, I.; Eiden, A.; Lidorikis, E.; Milana, S.; De Fazio, D.; Tomarchio, F.; Iodice, M.; Coppola, G.; et al. Vertically illuminated, resonant cavity, enhanced graphene-silicon Schottky photodetectors. ACS Nano 2017, 11, 10955. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gioffré, M.; Coppola, G.; Iodice, M.; Casalino, M. Integrable Near-Infrared Photodetectors Based on Hybrid Erbium/Silicon Junctions. Sensors 2018, 18, 3755. https://doi.org/10.3390/s18113755
Gioffré M, Coppola G, Iodice M, Casalino M. Integrable Near-Infrared Photodetectors Based on Hybrid Erbium/Silicon Junctions. Sensors. 2018; 18(11):3755. https://doi.org/10.3390/s18113755
Chicago/Turabian StyleGioffré, Mariano, Giuseppe Coppola, Mario Iodice, and Maurizio Casalino. 2018. "Integrable Near-Infrared Photodetectors Based on Hybrid Erbium/Silicon Junctions" Sensors 18, no. 11: 3755. https://doi.org/10.3390/s18113755
APA StyleGioffré, M., Coppola, G., Iodice, M., & Casalino, M. (2018). Integrable Near-Infrared Photodetectors Based on Hybrid Erbium/Silicon Junctions. Sensors, 18(11), 3755. https://doi.org/10.3390/s18113755