Efficient AoA-Based Wireless Indoor Localization for Hospital Outpatients Using Mobile Devices
<p>The angle of arrival (AoA)-based localization with two known access points (APs).</p> "> Figure 2
<p>Six normal cases of the target’s position. (<b>a</b>) Case 1, (<b>b</b>) Case 2, (<b>c</b>) Case 3, (<b>d</b>) Case 4, (<b>e</b>) Case 5, (<b>f</b>) Case 6.</p> "> Figure 2 Cont.
<p>Six normal cases of the target’s position. (<b>a</b>) Case 1, (<b>b</b>) Case 2, (<b>c</b>) Case 3, (<b>d</b>) Case 4, (<b>e</b>) Case 5, (<b>f</b>) Case 6.</p> "> Figure 3
<p>Special cases of the target’s position.</p> "> Figure 4
<p>The roaming strategy.</p> "> Figure 5
<p>The indoor test environment.</p> "> Figure 6
<p>Indoor localization results.</p> "> Figure 7
<p>Indoor localization errors.</p> "> Figure 8
<p>The measured RSSI profiles. (<b>a</b>) When the user holds the smartphone and walks; (<b>b</b>) when the user holds smartphone and spins.</p> "> Figure 9
<p>Indoor localization errors using the received signal strength indication (RSSI) range-based method.</p> "> Figure 10
<p>Indoor localization results.</p> "> Figure 11
<p>The cumulative distribution function (CDF) of localization error.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Methodology
3.1. AoA-Based Localization with Two Known APs
3.2. All Possible Positions of the Target around the APs
3.3. Roaming Strategy
4. Experiments and Results
4.1. Experimental Setup
4.2. The Impact of the Distance and Direction
4.3. Comparison with RSSI Range-Based Method
- (1)
- The user held the smartphone and walked up or back toward the AP, ranging from 0 to 50 m, and recorded the measured RSSI at a step size of 0.5 m.
- (2)
- The RSSI was fitted a function of the user’s distance to the AP, as illustrated in Figure 8.
- (3)
- The user held the smartphone and stood facing the two APs in one of the positions to , and recorded the RSSI values, corresponding to the and .
- (4)
- The distances ( and ) to and were retrieved, based on the function obtained in (2).
- (5)
- The user’s location could be estimated by solving the following set of equations:
4.4. Localization Accuracy
5. Conclusions and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Yim, J.; Ganesan, S.; Kang, B.H. Location-based mobile marketing innovations. Mob. Inf. Syst. 2017, 2017. [Google Scholar] [CrossRef]
- Carrizales-Villagómez, S.Y.; Nuño-Maganda, M.A.; Rubio-Loyola, J. A Platform for e-Health Control and Location Services for Wandering Patients. Mob. Inf. Syst. 2018, 2018. [Google Scholar] [CrossRef]
- Yang, C.-S.; Tsai, P.-W.; Liao, M.-Y.; Huang, C.-C.; Yeh, C.E. Location-based mobile multimedia push system. In Proceedings of the 2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), Huangshan, China, 10–12 October 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 181–184. [Google Scholar]
- Hinze, A.; Bainbridge, D. Location-triggered mobile access to a digital library of audio books using Tipple. Int. J. Digit. Libr. 2016, 17, 339–365. [Google Scholar] [CrossRef]
- Wu, L.; Stilwell, M.A. Exploring the marketing potential of location-based mobile games. J. Res. Interact. Mark. 2018, 12, 22–44. [Google Scholar] [CrossRef]
- Huh, J.H.; Seo, K. An indoor location-based control system using bluetooth beacons for IoT systems. Sensors 2017, 17, 2912. [Google Scholar] [CrossRef] [PubMed]
- Yassin, A.; Nasser, Y.; Awad, M.; Al-Dubai, A.; Liu, R.; Yuen, C.; Raulefs, R.; Aboutanios, E. Recent Advances in Indoor Localization: A Survey on Theoretical Approaches and Applications. IEEE Commun. Surv. Tutor. 2017, 19, 1327–1346. [Google Scholar] [CrossRef] [Green Version]
- Brena, R.F.; García-Vázquez, J.P.; Galván-Tejada, C.E.; Muñoz-Rodriguez, D.; Vargas-Rosales, C.; Fangmeyer, J. Evolution of indoor positioning technologies: A survey. J. Sens. 2017, 2017. [Google Scholar] [CrossRef]
- Silva, P.; Kaseva, V.; Lohan, E. Wireless Positioning in IoT: A Look at Current and Future Trends. Sensors 2018, 18, 2470. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Fattouche, M. OFDM transmission for time-based range estimation. IEEE Signal Process. Lett. 2010, 17, 571–574. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, D.; Fattouche, M. Time sum of arrival based BLUE for mobile target positioning. Adv. Sci. Lett. 2011, 4, 165–167. [Google Scholar] [CrossRef]
- Tiwari, S.; Wang, D.; Fattouche, M.; Ghannouchi, F. A Hybrid RSS/TOA Method for 3D Positioning in an Indoor Environment. ISRN Signal Process. 2012, 2012. [Google Scholar] [CrossRef]
- Podevijn, N.; Plets, D.; Trogh, J.; Martens, L.; Suanet, P.; Hendrikse, K.; Joseph, W. TDoA-Based Outdoor Positioning with Tracking Algorithm in a Public LoRa Network. Wirel. Commun. Mob. Comput. 2018, 2018. [Google Scholar] [CrossRef]
- Nurminen, H.; Dashti, M.; Piché, R. A survey on wireless transmitter localization using signal strength measurements. Wirel. Commun. Mob. Comput. 2017, 2017. [Google Scholar] [CrossRef]
- Zhu, H.; Alsharari, T. An improved RSSI-based positioning method using sector transmission model and distance optimization technique. Int. J. Distrib. Sens. Netw. 2015, 11, 587195. [Google Scholar] [CrossRef]
- Passafiume, M.; Maddio, S.; Cidronali, A. An improved approach for RSSI-based only calibration-free real-time indoor localization on IEEE 802.11 and 802.15.4 wireless networks. Sensors 2017, 17, 717. [Google Scholar] [CrossRef] [PubMed]
- Mao, G.; Anderson, B.D.O.; Fidan, B. Path loss exponent estimation for wireless sensor network localization. Comput. Netw. 2007, 51, 2467–2483. [Google Scholar] [CrossRef]
- Jia, Z.; Wu, C.; Li, Z.; Zhang, Y.; Guan, B. The Indoor Localization and Tracking Estimation Method of Mobile Targets in Three-Dimensional Wireless Sensor Networks. Sensors 2015, 15, 29661–29684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, Y.; Yang, J.; Li, Y.; Qi, L.; El-Sheimy, N. Smartphone-based indoor localization with bluetooth low energy beacons. Sensors 2016, 16, 596. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Chan, S.-H.G. Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons. IEEE Commun. Surv. Tutor. 2016, 18, 466–490. [Google Scholar] [CrossRef]
- Wang, X.; Gao, L.; Mao, S.; Pandey, S. CSI-based fingerprinting for indoor localization: A deep learning approach. IEEE Trans. Veh. Technol. 2017, 66, 763–776. [Google Scholar] [CrossRef]
- Xiang, P.; Ji, P.; Zhang, D. Enhance RSS-Based Indoor Localization Accuracy by Leveraging Environmental Physical Features. Wirel. Commun. Mob. Comput. 2018, 2018. [Google Scholar] [CrossRef]
- Amundson, I.; Sallai, J.; Koutsoukos, X.; Ledeczi, A. Mobile sensor waypoint navigation via RF-based angle of arrival localization. Int. J. Distrib. Sens. Netw. 2012, 2012, 1–15. [Google Scholar] [CrossRef]
- Schüssel, M. Angle of Arrival Estimation using WiFi and Smartphones. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcalá de Henares, Spain, 4–7 October 2016; Volume 4, p. 7. [Google Scholar]
- Song, G.; Tam, D. Two Novel DV-Hop Localization Algorithms for Randomly Deployed Wireless Sensor Networks. Int. J. Distrib. Sens. Netw. 2015, 2015. [Google Scholar] [CrossRef]
- Xu, Y.; Luo, X.; Wang, W.; Zhao, W. Efficient DV-HOP localization for wireless cyber-physical social sensing system: A correntropy-based neural network learning scheme. Sensors 2017, 17, 135. [Google Scholar] [CrossRef] [PubMed]
- Cheikhrouhou, O.; Bhatti, G.M.; Alroobaea, R. A hybrid DV-hop algorithm using RSSI for localization in large-scale wireless sensor networks. Sensors 2018, 18, 1469. [Google Scholar] [CrossRef] [PubMed]
- Paek, J.; Ko, J.; Shin, H. A measurement study of BLE iBeacon and geometric adjustment scheme for indoor location-based mobile applications. Mob. Inf. Syst. 2016, 2016. [Google Scholar] [CrossRef]
- Kriz, P.; Maly, F.; Kozel, T. Improving indoor localization using bluetooth low energy beacons. Mob. Inf. Syst. 2016, 2016. [Google Scholar] [CrossRef]
- Ahmed, A.U.; Arablouei, R.; de Hoog, F.; Kusy, B.; Jurdak, R.; Bergmann, N. Estimating angle-of-arrival and time-of-flight for multipath components using wifi channel state information. Sensors 2018, 18, 1753. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhou, Z.; Liu, Y. From RSSI to CSI: Indoor localization via channel response. ACM Comput. Surv. 2013, 46, 1–32. [Google Scholar] [CrossRef]
- Jachimczyk, B.; Dziak, D.; Kulesza, W.J. Using the fingerprinting method to customize RTLS based on the AoA ranging technique. Sensors 2016, 16, 876. [Google Scholar] [CrossRef] [PubMed]
- Tomic, S.; Beko, M.; Dinis, R.; Gomes, J.P. Target tracking with sensor navigation using coupled RSS and AOA measurements. Sensors 2017, 17, 2690. [Google Scholar] [CrossRef] [PubMed]
- Tomic, S.; Beko, M.; Dinis, R.; Bernardo, L. On target localization using combined RSS and AoA measurements. Sensors 2018, 18, 1266. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Chong, N.Y. RFID-based mobile robot guidance to a stationary target. Mechatronics 2007, 17, 217–229. [Google Scholar] [CrossRef]
- Kim, M.; Chong, N.Y. Direction Sensing RFID Reader for Mobile Robot Navigation. IEEE Trans. Autom. Sci. Eng. 2009, 6, 44–54. [Google Scholar]
- Jiang, J.R.; Lin, C.M.; Lin, F.Y.; Huang, S.T. ALRD: AoA localization with RSSI differences of directional antennas for wireless sensor networks. Int. J. Distrib. Sens. Netw. 2013, 2013, 304–309. [Google Scholar] [CrossRef]
- Malajner, M.; Cucej, Z.; Gleich, D. Angle of arrival estimation using a single omnidirectional rotatable antenna. In Proceedings of the 2012 IEEE International Conference on 2012 Wireless Information Technology and Systems (ICWITS), Maui, HI, USA, 11–16 November 2012; Volume 12, pp. 1950–1957. [Google Scholar] [CrossRef]
- Amundson, I.; Sallai, J.; Koutsoukos, X.; Ledeczi, A. Radio interferometric angle of arrival estimation. Lect. Notes Comput. Sci. 2010, 5970 LNCS, 1–16. [Google Scholar] [CrossRef]
- Xiong, J.; Jamieson, K. ArrayTrack: A fine-grained indoor location system. In Proceedings of the Usenix Conference on Networked Systems Design and Implementation, Lombard, IL, USA, 2–5 April 2013; pp. 71–84. [Google Scholar]
- Gjengset, J.; Xiong, J.; McPhillips, G.; Jamieson, K. Phaser: Enabling phased array signal processing on commodity WiFi access points. In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, Maui, HI, USA, 7–11 September 2014; Volume 19, pp. 153–164. [Google Scholar] [CrossRef]
- Chen, H.C.; Lin, T.H.; Kung, H.T.; Lin, C.K.; Gwon, Y. Determining RF angle of arrival using COTS antenna arrays: A field evaluation. In Proceedings of the 2013 IEEE Military Communications Conference, San Diego, CA, USA, 18–20 November 2013; pp. 1–6. [Google Scholar]
- Jiang, J.-R.R.; Lin, C.-M.M.; Hsu, Y.-J. Localization with Rotatable Directional Antennas for Wireless Sensor Networks. In Proceedings of the 2010 39th International Conference on IEEE Parallel Processing Workshops (ICPPW), San Diego, CA, USA, 13–16 September 2010; pp. 542–548. [Google Scholar]
- Zhang, Z.; Zhou, X.; Zhang, W.; Zhang, Y.; Wang, G.; Zhao, B.Y.; Zheng, H. I am the antenna: Accurate outdoor AP location using smartphones. In Proceedings of the 17th Annual International Conference on Mobile Computing and Networking (MobiCom), Las Vegas, NV, USA, 20–22 September 2011; pp. 109–120. [Google Scholar]
- Sen, S.; Choudhury, R.R.; Nelakuditi, S. SpinLoc: Spin once to know your location. In Proceedings of the the Twelfth Workshop on Mobile Computing Systems & Applications, San Diego, CA, USA, 28–29 February 2012; ACM: New York, NY, USA, 2012; p. 12. [Google Scholar]
- Tzur, A.; Amrani, O.; Wool, A. Direction Finding of rogue Wi-Fi access points using an off-the-shelf MIMO-OFDM receiver. Phys. Commun. 2015, 17, 149–164. [Google Scholar] [CrossRef]
- Kotaru, M.; Joshi, K.; Bharadia, D.; Katti, S. SpotFi: Decimeter level localization using wifi. In ACM SIGCOMM Computer Communication Review; ACM: New York, NY, USA, 2015; Volume 45, pp. 269–282. [Google Scholar]
- Sayed, A.H.; Tarighat, A.; Khajehnouri, N. Network-based wireless location: Challenges faced in developing techniques for accurate wireless location information. IEEE Signal Process. Mag. 2005, 22, 24–40. [Google Scholar] [CrossRef]
- Cisco Systems. Cisco Aironet 4800 Access Point, Data Sheet; Cisco Systems, Inc.: San Jose, CA, USA, 2018; pp. 1–13. [Google Scholar]
- Cisco Hyperlocation Solution. Available online: https://www.cisco.com/c/en/us/solutions/enterprise-networks/hyperlocation-solution/index.html (accessed on 26 August 2018).
Position | Actual AoAs | Measured AoAs | Location | ||||
---|---|---|---|---|---|---|---|
Actual | Estimated | ||||||
(7.07, 7.07) | (5.92, 7.62) | 1.27 | |||||
(10.61, 10.61) | (10.65, 9.33) | 1.28 | |||||
(14.14, 14,14) | (13.82, 13.44) | 0.77 | |||||
(17.68, 17.68) | (18.40, 19.28) | 1.76 | |||||
(21.21, 21.21) | (20.29, 22.92) | 1.94 | |||||
(24.75, 24.75) | (24.76, 26.82) | 2.07 | |||||
(28.28, 28.28) | (27.47, 30.85) | 2.70 | |||||
(−21.21, 21.21) | (−20.49, 20.49) | 1.02 | |||||
(−21.21, −21.21) | (−20.04, −20.23) | 1.52 | |||||
(21.21, −21.21) | (20.95, −20.76) | 0.52 |
Position | Location Error Using Our Proposed Method | Location Error Using RSSI Range-Based Method | ||||||
---|---|---|---|---|---|---|---|---|
Max | Min | Mean | Median | Max | Min | Mean | Median | |
1.87 | 0.10 | 1.27 | 1.27 | 2.18 | 0.38 | 1.33 | 1.20 | |
1.35 | 0.26 | 1.05 | 1.30 | 2.85 | 0.72 | 1.43 | 1.26 | |
1.76 | 0.17 | 1.10 | 1.21 | 2.47 | 0.75 | 1.67 | 1.62 | |
2.24 | 0.27 | 1.49 | 1.73 | 2.68 | 1.00 | 1.87 | 2.04 | |
2.68 | 0.52 | 1.54 | 1.48 | 3.24 | 1.13 | 2.33 | 2.23 | |
3.33 | 0.50 | 2.30 | 2.69 | 5.09 | 1.77 | 3.16 | 3.18 | |
3.29 | 0.42 | 2.40 | 2.94 | 5.22 | 1.42 | 3.31 | 3.26 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Y.; Yang, X.; Abbasi, Q.H. Efficient AoA-Based Wireless Indoor Localization for Hospital Outpatients Using Mobile Devices. Sensors 2018, 18, 3698. https://doi.org/10.3390/s18113698
Hou Y, Yang X, Abbasi QH. Efficient AoA-Based Wireless Indoor Localization for Hospital Outpatients Using Mobile Devices. Sensors. 2018; 18(11):3698. https://doi.org/10.3390/s18113698
Chicago/Turabian StyleHou, Yanbin, Xiaodong Yang, and Qammer H. Abbasi. 2018. "Efficient AoA-Based Wireless Indoor Localization for Hospital Outpatients Using Mobile Devices" Sensors 18, no. 11: 3698. https://doi.org/10.3390/s18113698
APA StyleHou, Y., Yang, X., & Abbasi, Q. H. (2018). Efficient AoA-Based Wireless Indoor Localization for Hospital Outpatients Using Mobile Devices. Sensors, 18(11), 3698. https://doi.org/10.3390/s18113698