A Distributed Parallel Algorithm Based on Low-Rank and Sparse Representation for Anomaly Detection in Hyperspectral Images
<p>Data model of LRASR.</p> "> Figure 2
<p>Flowchart of LRASR.</p> "> Figure 3
<p>Flowchart of DPA.</p> "> Figure 4
<p>Data transmission before using the pre-merge mechanism.</p> "> Figure 5
<p>Data transmission after using the pre-merge mechanism.</p> "> Figure 6
<p>The first Hyperspectral Image (HSI1). (<b>a</b>) The false color image of the entire image; (<b>b</b>) The false color image of the chosen area for detection; (<b>c</b>) The ground-truth map of the chosen area [<a href="#B30-sensors-18-03627" class="html-bibr">30</a>].</p> "> Figure 7
<p>The second Hyperspectral Image (HSI2). (<b>a</b>) The false color image of the entire image; (<b>b</b>) The false color image of the chosen area for detection; (<b>c</b>) The ground-truth map of the chosen area [<a href="#B30-sensors-18-03627" class="html-bibr">30</a>].</p> "> Figure 8
<p>Speedups of DPA with different numbers of nodes in Experiments 1–3.</p> "> Figure 9
<p>Memory consumption (MB) of LRASR and DPA with different number of nodes in Experiment 1.</p> "> Figure 10
<p>Speedups of DPA processing big HSIs with different data sizes.</p> ">
Abstract
:1. Introduction
2. Anomaly Detection Using Low-Rank and Sparse Representation (LRASR)
3. Distributed Parallel Algorithm (DPA)
3.1. Data Organization and Storage Optimization Methods
3.2. Distributed Parallel K-Means Algorithm
3.3. Distributed Parallel Dictionary Construction
3.4. Distributed Parallel ADMM
3.5. Comparison and Analysis
4. Experimental Results
5. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Liao, W.; Mura, M.D.; Chanussot, J.; Piźurica, A. Fusion of spectral and spatial information for classification of hyperspectral remote-sensed imagery by local graph. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 583–594. [Google Scholar] [CrossRef]
- Fauvel, M.; Chanussot, J.; Benediktsson, J.A. A spatial-spectral kernel-based approach for the classification of remote-sensing images. Pattern Recognit. 2012, 45, 381–392. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Tao, D.; Huang, X.; Du, B. Hyperspectral remote sensing image subpixel target detection based on supervised metric learning. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4955–4965. [Google Scholar] [CrossRef]
- Xia, J.; Chanussot, J.; Du, P.; He, X. (Semi-) supervised probabilistic principal component analysis for hyperspectral remote sensing image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2224–2236. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, C.; You, D.; Zhang, Y.; Wang, S.; Zhang, Y. Representative Multiple Kernel Learning for Classification in Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2852–2865. [Google Scholar] [CrossRef]
- Cheng, G.; Yang, C.; Yao, X.; Guo, L.; Han, J. When Deep Learning Meets Metric Learning: Remote Sensing Image Scene Classification via Learning Discriminative CNNs. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2811–2821. [Google Scholar] [CrossRef]
- Xiao, F.; Chen, L.; Sha, C.; Sun, L.; Wang, R.; Liu, A.X.; Ahmed, F. Noise Tolerant Localization for Sensor Networks. IEEE/ACM Trans. Netw. 2018, 26, 1701–1714. [Google Scholar] [CrossRef]
- Zare, A.; Bolton, J.; Chanussot, J.; Gader, P. Foreword to the Special Issue on Hyperspectral Image and Signal Processing. IEEE Trans. Geosci. Remote Sens. 2010, 7, 1841–1843. [Google Scholar] [CrossRef]
- Sun, X.; Qu, Q.; Nasrabadi, N.M.; Tran, T.D. Structured Priors for Sparse-Representation-Based Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1235–1239. [Google Scholar] [Green Version]
- Wu, Z.; Wang, Q.; Plaza, A.; Li, J.; Liu, J.; Wei, Z. Parallel Implementation of Sparse Representation Classifiers for Hyperspectral Imagery on GPUs. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2912–2925. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, L.; Li, J.; Wang, Q.; Sun, L.; Wei, Z.; Plaza, J.; Plaza, A. GPU Parallel Implementation of Spatially Adaptive Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 11, 1131–1143. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Q.; Plaza, A.; Li, J.; Sun, L.; Wei, Z. Parallel Spatial-Spectral Hyperspectral Image Classification With Sparse Representation and Markov Random Fields on GPUs. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2926–2938. [Google Scholar] [CrossRef]
- Liu, C.; He, L.; Li, Z.; Li, J. Feature-Driven Active Learning for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 56, 341–354. [Google Scholar] [CrossRef]
- Chang, C.I. Hyperspectral Data Exploitation: Theory and Applications; Wiley: New York, NY, USA, 2007. [Google Scholar]
- Pontius, J.; Martin, M.; Plourde, L.; Hallett, R. Ash decline assessment in emerald ash borer-infested regions: A test of tree-level, hyperspectral technologies. Remote Sens. Environ. 2008, 112, 2665–2676. [Google Scholar] [CrossRef]
- Fauvel, M.; Tarabalka, Y.; Benediktsson, J.A.; Chanussot, J.; Tilton, J.C. Advances in Spectral-Spatial Classification of Hyperspectral Images. Proc. IEEE 2013, 101, 652–675. [Google Scholar] [CrossRef]
- Feng, L.; Zhu, S.; Lin, F.; Su, Z.; Yuan, K.; Zhao, Y.; He, Y.; Zhang, C. Detection of Oil Chestnuts Infected by Blue Mold Using Near-Infrared Hyperspectral Imaging Combined with Artificial Neural Networks. Sensors 2018, 18, 1944. [Google Scholar] [CrossRef] [PubMed]
- Chu, B.; Yu, K.; Zhao, Y.; He, Y. Development of Noninvasive Classification Methods for Different Roasting Degrees of Coffee Beans Using Hyperspectral Imaging. Sensors 2018, 18, 1259. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Du, B.; Zhang, L.; Wang, S. A Low-Rank and Sparse Matrix Decomposition-Based Mahalanobis Distance Method for Hyperspectral Anomaly Detection. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1376–1389. [Google Scholar] [CrossRef]
- Du, B.; Zhang, L. Random-Selection-Based Anomaly Detector for Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1578–1589. [Google Scholar] [CrossRef]
- Reed, I.S.; Yu, X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 1760–1770. [Google Scholar] [CrossRef]
- Nasrabadi, N.M. Regularization for spectral matched filter and RX anomaly detector. Proc. Spie Int. Soc. Opt. Eng. 2008, 6966, 696604. [Google Scholar]
- Matteoli, S.; Diani, M. Improved estimation of local background covariance matrix for anomaly detection in hyperspectral images. Opt. Eng. 2010, 49, 258. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, B.; Ran, Q.; Gao, L.; Li, J.; Plaza, A. Weighted-RXD and Linear Filter-Based RXD: Improving Background Statistics Estimation for Anomaly Detection in Hyperspectral Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2351–2366. [Google Scholar] [CrossRef]
- Sakla, W.; Chan, A.; Ji, J.; Sakla, A. An SVDD-Based Algorithm for Target Detection in Hyperspectral Imagery. IEEE Geosci. Remote Sens. Lett. 2011, 8, 384–388. [Google Scholar] [CrossRef]
- Du, B.; Zhang, L. A Discriminative Metric Learning Based Anomaly Detection Method. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6844–6857. [Google Scholar]
- Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Simultaneous Joint Sparsity Model for Target Detection in Hyperspectral Imagery. IEEE Geosci. Remote Sens. Lett. 2011, 8, 676–680. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Hyperspectral Image Classification via Kernel Sparse Representation. IEEE Trans. Geosci. Remote Sens. 2012, 51, 217–231. [Google Scholar] [CrossRef]
- Li, W.; Du, Q. Collaborative Representation for Hyperspectral Anomaly Detection. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1463–1474. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, Z.; Li, J.; Plaza, A.; Wei, Z. Anomaly Detection in Hyperspectral Images Based on Low-Rank and Sparse Representation. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1990–2000. [Google Scholar] [CrossRef]
- Blanchard, J.D.; Tanner, J. GPU accelerated greedy algorithms for compressed sensing. Math. Program. Comput. 2013, 5, 267–304. [Google Scholar] [CrossRef]
- Fiandrotti, A.; Fosson, S.M.; Ravazzi, C.; Magli, E. GPU-accelerated algorithms for compressed signals recovery with application to astronomical imagery deblurring. Int. J. Remote Sens. 2017, 39, 2043–2065. [Google Scholar] [CrossRef] [Green Version]
- Paz, A.; Plaza, A. GPU implementation of target and anomaly detection algorithms for remotely sensed hyperspectral image analysis. Proc. SPIE 2010, 7810, 78100R. [Google Scholar]
- Ferreira, R.S.; Bentes, C.; Costa, G.A.O.P.; Oliveira, D.A.B.; Happ, P.N.; Feitosa, R.Q.; Gamba, P. A set of methods to support object-based distributed analysis of large volumes of earth observation data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 681–690. [Google Scholar] [CrossRef]
- Wu, Z.; Li, Y.; Plaza, A.; Li, J.; Xiao, F.; Wei, Z. Parallel and dstributed dimensionality reduction of hyperspectral data on cloud computing architectures. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2270–2278. [Google Scholar] [CrossRef]
- Quirita, V.A.A.; da Costa, G.A.O.P.; Happ, P.N.; Feitosa, R.Q.; Ferreira, R.D.S.; Oliveira, D.A.B.; Plaza, A. A new cloud computing architecture for the classification of remote sensing data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 409–416. [Google Scholar] [CrossRef]
- Costa, G.A.O.P.; Bentes, C.; Ferreira, R.S.; Feitosa, R.Q.; Oliveira, D.A.B. Exploiting different types of parallelism in distributed analysis of remote sensing data. IEEE Geosci. Remote Sens. Lett. 2017, PP, 1–5. [Google Scholar] [CrossRef]
- Paz, A.; Plaza, A.; Plaza, J. Comparative analysis of different implementations of a parallel algorithm for automatic target detection and classification of hyperspectral images. Proc. SPIE 2009, 7455, 74550X. [Google Scholar]
- Paz, A.; Molero, J.M.; Garzon, E.M.; Martinez, J.A.; Plaza, A. A New Parallel Implementation of the RX Algorithm for Anomaly Detection in Hyperspectral Images. In Proceedings of the International Conference on Computational and Mathematical Methods in Science and Engineering, Almeria, Spain, 27–30 June 2010. [Google Scholar]
- Paz, A.; Plaza, A. Clusters versus GPUs for parallel target and anomaly detection in hyperspectral images. EURASIP J. Adv. Signal Process. 2010, 2010, 915639. [Google Scholar] [CrossRef]
- Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. Commun. ACM 2008, 51, 107–113. [Google Scholar] [CrossRef]
- Yang, M.; Song, W.; Mei, H. Efficient Retrieval of Massive Ocean Remote Sensing Images via a Cloud-Based Mean-Shift Algorithm. Sensors 2017, 17, 1693. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Su, D.; Zhu, H.; Li, W.; Zhang, F.; Li, R. A Fast Synthetic Aperture Radar Raw Data Simulation Using Cloud Computing. Sensors 2017, 17, 113. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Cai, W.; Jin, D.; Shen, J.; Fu, Z.; Liu, X.; Linge, N. Estimation Accuracy on Execution Time of Run-Time Tasks in a Heterogeneous Distributed Environment. Sensors 2016, 16, 1386. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Bang, J.H.; Han, M.; Ahmed, M.I.; Amin, M.B.; Lee, S.; Nugent, C.; Mcclean, S.; Scotney, B.; Parr, G. Behavior life style analysis for mobile sensory data in cloud computing through MapReduce. Sensors 2014, 14, 22001. [Google Scholar] [CrossRef] [PubMed]
- Ryza, S.; Laserson, U.; Owen, S.; Wills, J. Advanced Analytics with Spark: Patterns for Learning from Data at Scale; O’Reilly Media: Sebastopol, CA, USA, 2015. [Google Scholar]
- Reyes-Ortiz, J.L.; Oneto, L.; Anguita, D. Big Data Analytics in the Cloud: Spark on Hadoop vs MPI/OpenMP on Beowulf. Procedia Comput. Sci. 2015, 53, 121–130. [Google Scholar] [CrossRef]
- Zaharia, M.; Chowdhury, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Spark: Cluster computing with working sets. In Proceedings of the Usenix Conference on Hot Topics in Cloud Computing, Boston, MA, USA, 22–25 June 2010; p. 10. [Google Scholar]
- Moreno-Torres, J.G.; Saez, J.A.; Herrera, F. Study on the impact of partition-induced dataset shift on k-fold cross-validation. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 1304–1312. [Google Scholar] [CrossRef] [PubMed]
- Senthilnath, J.; Sindhu, S.; Omkar, S.N. GPU-based normalized cuts for road extraction using satellite imagery. J. Earth Syst. Sci. 2014, 123, 1759–1769. [Google Scholar] [CrossRef]
Experiments | HSIs | Platforms |
---|---|---|
Experiment 1 | HSI1 | Spark1 |
Experiment 2 | HSI2 | Spark1 |
Experiment 3 | HSI1 | Spark2 |
Experiment 4 | HSI3-HSI6 | Spark3 |
Number of Nodes | Times (EX1) | AUC (EX1) | Times (EX2) | AUC (EX2) | Times (EX3) | AUC (EX3) |
---|---|---|---|---|---|---|
LRASR | 3987 | 0.9181 | 4957 | 0.9595 | 3657 | 0.9184 |
DPA with 2 Nodes | 1788 | 0.9202 | 2613 | 0.9596 | 1699 | 0.9218 |
DPA with 4 Nodes | 955 | 0.9184 | 1223 | 0.9601 | 842 | 0.9141 |
DPA with 8 Nodes | 451 | 0.9193 | 586 | 0.9609 | 418 | 0.9188 |
DPA with 16 Nodes | 233 | 0.9195 | 290 | 0.9616 | 232 | 0.9116 |
DPA with 32 Nodes | 116 | 0.9203 | 149 | 0.9607 | 111 | 0.9184 |
Metrics | 2 Nodes | 4 Nodes | 8 Nodes | 16 Nodes | 32 Nodes |
---|---|---|---|---|---|
AUC | 0.9216 | 0.9166 | 0.9187 | 0.9141 | 0.9155 |
Times | 4320 | 2524 | 2272 | 1706 | 1706 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wu, Z.; Sun, J.; Zhang, Y.; Zhu, Y.; Liu, J.; Zang, Q.; Plaza, A. A Distributed Parallel Algorithm Based on Low-Rank and Sparse Representation for Anomaly Detection in Hyperspectral Images. Sensors 2018, 18, 3627. https://doi.org/10.3390/s18113627
Zhang Y, Wu Z, Sun J, Zhang Y, Zhu Y, Liu J, Zang Q, Plaza A. A Distributed Parallel Algorithm Based on Low-Rank and Sparse Representation for Anomaly Detection in Hyperspectral Images. Sensors. 2018; 18(11):3627. https://doi.org/10.3390/s18113627
Chicago/Turabian StyleZhang, Yi, Zebin Wu, Jin Sun, Yan Zhang, Yaoqin Zhu, Jun Liu, Qitao Zang, and Antonio Plaza. 2018. "A Distributed Parallel Algorithm Based on Low-Rank and Sparse Representation for Anomaly Detection in Hyperspectral Images" Sensors 18, no. 11: 3627. https://doi.org/10.3390/s18113627
APA StyleZhang, Y., Wu, Z., Sun, J., Zhang, Y., Zhu, Y., Liu, J., Zang, Q., & Plaza, A. (2018). A Distributed Parallel Algorithm Based on Low-Rank and Sparse Representation for Anomaly Detection in Hyperspectral Images. Sensors, 18(11), 3627. https://doi.org/10.3390/s18113627