Virtual FBGs Using Saturable Absorbers for Sensing with Fiber Lasers
<p>Schematic description of Fiber Bragg Gratings (FBG) induced by Spatial Hole Burning (SHB) with stationary wave on Er-doped fibers. Both incoming and outgoing waves create a standing wave that makes a periodic variation of the refraction index whose period matches the seed FBG.</p> "> Figure 2
<p>The FBG induced by the standing wave in the unpumped Er-doped fiber (EDF) modifies the passive response of the mirror FBG. Part of the incoming light is reflected by the induced FBG and dominates the active medium lasing properties due to gain competition of EDFs.</p> "> Figure 3
<p>Erbium doped fiber sigma-cavity laser (EDSCL) sensor configuration. Two types of unpumped EDF block are introduced within the ring cavity before the FBG to evaluate the active lasing modes.</p> "> Figure 4
<p>High-resolution output spectra of the EDSCL measured by a BOSA of each tested configuration: no passive EDF (<b>a</b>), 2 m of EDF M12 (<b>b</b>), or 2 m of EDF I25 (<b>c</b>) as passive element.</p> "> Figure 5
<p>Electric beat with a tunable laser source (TLS) of the laser output for each tested configuration: No unpumped EDF (<b>a</b>), 2 m of unpumped EDF M12 (<b>b</b>), or 2 m of unpumped EDF I25 (<b>c</b>). SLM can be reached with an unpumped EDF and a common FBG as filter elements on a fiber laser.</p> "> Figure 6
<p>Output spectra measured by the OSA when using 2 m of EDF M12.</p> "> Figure 7
<p>Hold trace of the laser emission. It exhibits a wavelength variation under 11 pm over 10 min when 2 m of M12 was used as unpumped EDF.</p> "> Figure 8
<p>Output power stability measured for 60 min with constant pump power (100 mW) when 2 m of EDF I25 was used.</p> "> Figure 9
<p>Strain sensitivity of the EDSCL. The whole erbium doped fiber ring laser (EDFRL) sensor exhibits the same sensitivity as the FBG employed to select the lasing wavelength.</p> "> Figure 10
<p>Temperature sensitivity of the EDSCL. The whole EDSCL sensor exhibits the same sensitivity as the FBG employed to select the lasing wavelength.</p> ">
Abstract
:1. Introduction
2. Working Principles
3. Experiments
3.1. Spectral Characterization
3.2. Wavelength and Power Stability
3.3. Sensor Response
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- López-Higuera, J.M.; Cobo, L.R.; Incera, A.Q.; Cobo, A. Fiber optic sensors in structural health monitoring. J. Lightw. Technol. 2011, 29, 587–608. [Google Scholar] [CrossRef]
- Perez-Herrera, R.A.; Lopez-Amo, M. Fiber optic sensor networks. Opt. Fiber Technol. 2013, 19, 689–699. [Google Scholar] [CrossRef]
- Fernandez-Vallejo, M.; Lopez-Amo, M. Optical fiber networks for remote fiber optic sensors. Sensors 2012, 12, 3929–3951. [Google Scholar] [CrossRef] [PubMed]
- Perez-Herrera, R.A.; Ullan, A.; Leandro, D.; Fernandez-Vallejo, M.; Quintela, M.A.; Loayssa, A.; Lopez-Higuera, J.M.; Lopez-Amo, M. L-band multiwavelength single-longitudinal mode fiber laser for sensing applications. J. Lightw. Technol. 2012, 30, 1173–1177. [Google Scholar] [CrossRef]
- Elosua, C.; Perez-Herrera, R.A.; Lopez-Amo, M.; Bariain, C.; Garcia-Olcina, R.; Sales, S.; Capmany, J. An amplified coarse wavelength division multiplexing self-referencing sensor network based on phase-shifted FBGs in transmissive configuration. Meas. Sci. Technol. 2009, 20, 034017. [Google Scholar] [CrossRef]
- Bellemare, A. Continuous-wave silica-based erbium-doped fibre lasers. Prog. Quantum Electron. 2003, 27, 211–266. [Google Scholar] [CrossRef]
- Pan, S.; Zhao, X.; Lou, C. Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser incorporating a semiconductor optical amplifier. Opt. Lett. 2008, 33, 764–766. [Google Scholar] [CrossRef] [PubMed]
- Perez-Herrera, R.A.; Chen, S.; Zhao, W.; Sun, T.; Grattan, K.; Lopez-Amo, M. Stability performance of short cavity Er-doped fiber lasers. Opt. Commun. 2010, 283, 1067–1070. [Google Scholar] [CrossRef]
- Quintela, M.A.; Perez-Herrera, R.A.; Canales, I.; Fernandez-Vallejo, M.; Lopez-Amo, M.; Lopez-Higuera, J.M. Stabilization of dual-wavelength erbium-doped fiber ring lasers by single-mode operation. IEEE Photonics Technol. Lett. 2010, 22, 368–370. [Google Scholar] [CrossRef]
- Rota-Rodrigo, S.; Rodríguez-Cobo, L.; Quintela, M.Á.; López-Higuera, J.M.; López-Amo, M. Dual-wavelength single-longitudinal mode fiber laser using phase-shift Bragg gratings. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 161–165. [Google Scholar] [CrossRef]
- Rodriguez-Cobo, L.; Quintela, M.A.; Ruiz-Lombera, R.; Perez-Herrera, R.A.; Lopez-Amo, M.; Lopez-Higuera, J.M. Influence of saturable absorbers on fiber ring laser sensors. In Proceedings of the 25th International Conference on Optical Fiber Sensors, OFS 2017, Jeju, Korea, 24–28 April 2017; Volume 10323, p. 103232H. [Google Scholar]
- Zhang, K.; Kang, J.U. C-band wavelength-swept single-longitudinal-mode erbium-doped fiber ring laser. Opt. Express 2008, 16, 14173–14179. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Havstad, S.; Starodubov, D.; Xie, Y.; Willner, A.; Feinberg, J. 40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG. IEEE Photonics Technol. Lett. 2001, 13, 1167–1169. [Google Scholar] [CrossRef]
- Liu, J.; Yao, J.; Yao, J.; Yeap, T.H. Single longitudinal mode multi-wavelength fiber ring lasers. In Proceedings of the Optical Fiber Communication Conference (OFC 2004), Los Angeles, CA, USA, 23–27 February 2004; Volume 2, p. 1362059. [Google Scholar]
- Pérez-Herrera, R.A.; Quintela, M.A.; Fernández-Vallejo, M.; Quintela, A.; López-Amo, M.; López-Higuera, J.M. Stability comparison of two ring resonator structures for multiwavelength fiber lasers using highly doped Er-fibers. J. Lightw. Technol. 2009, 27, 2563–2569. [Google Scholar] [CrossRef]
- Cusano, A.; Iadicicco, A.; Paladino, D.; Campopiano, S.; Cutolo, A. Photonic band-gap engineering in UV fiber gratings by the arc discharge technique. Opt. Express 2008, 16, 15332–15342. [Google Scholar] [CrossRef] [PubMed]
- Fleming, S.C.; Whitley, T. Measurement and analysis of pump-dependent refractive index and dispersion effects in erbium-doped fiber amplifiers. IEEE J. Quantum Electron. 1996, 32, 1113–1121. [Google Scholar] [CrossRef]
- Othonos, A. Fiber Bragg gratings. Rev. Sci. Instrum. 1997, 68, 4309–4341. [Google Scholar] [CrossRef]
- Diaz, S.; Abad, S.; Lopez-Amo, M. Fiber optic sensor active networking with distributed erbium-doped fiber and Raman amplification. Laser Photonics Rev. 2008, 2, 480–497. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez-Cobo, L.; Perez-Herrera, R.A.; Quintela, M.A.; Ruiz-Lombera, R.; Lopez-Amo, M.; Lopez-Higuera, J.M. Virtual FBGs Using Saturable Absorbers for Sensing with Fiber Lasers. Sensors 2018, 18, 3593. https://doi.org/10.3390/s18113593
Rodriguez-Cobo L, Perez-Herrera RA, Quintela MA, Ruiz-Lombera R, Lopez-Amo M, Lopez-Higuera JM. Virtual FBGs Using Saturable Absorbers for Sensing with Fiber Lasers. Sensors. 2018; 18(11):3593. https://doi.org/10.3390/s18113593
Chicago/Turabian StyleRodriguez-Cobo, Luis, Rosa A. Perez-Herrera, María A. Quintela, Rubén Ruiz-Lombera, Manuel Lopez-Amo, and José M. Lopez-Higuera. 2018. "Virtual FBGs Using Saturable Absorbers for Sensing with Fiber Lasers" Sensors 18, no. 11: 3593. https://doi.org/10.3390/s18113593
APA StyleRodriguez-Cobo, L., Perez-Herrera, R. A., Quintela, M. A., Ruiz-Lombera, R., Lopez-Amo, M., & Lopez-Higuera, J. M. (2018). Virtual FBGs Using Saturable Absorbers for Sensing with Fiber Lasers. Sensors, 18(11), 3593. https://doi.org/10.3390/s18113593