A MEMS IMU De-Noising Method Using Long Short Term Memory Recurrent Neural Networks (LSTM-RNN)
<p>Basic structure of a Long Short Term Memory (LSTM) Unit.</p> "> Figure 2
<p>Working flow of the LSTM-RNN. (<b>a</b>) brief working flow of LSTM-RNN (Recurrent Neural Network); (<b>b</b>) a sequence of LSTM Unit.</p> "> Figure 3
<p>MSI3200 Inertial Measurement Unit.</p> "> Figure 4
<p>X-axis gyroscope signals.</p> "> Figure 5
<p>Auto-correlation and partial correlation analysis results of X-axis gyroscope signals. (<b>a</b>) autocorrelation analysis diagram; (<b>b</b>) Partial correlation analysis diagram.</p> "> Figure 6
<p>Auto-correlation and partial correlation analysis results of Y-axis gyroscope signals. (<b>a</b>) autocorrelation analysis diagram; (<b>b</b>) Partial correlation analysis diagram.</p> "> Figure 7
<p>Auto-correlation and partial correlation analysis results of Z-axis gyroscope signals. (<b>a</b>) autocorrelation analysis diagram; (<b>b</b>) Partial correlation analysis diagram.</p> "> Figure 8
<p>Training loss comparison between single-layer LSTM and multi-layer LSTM.</p> "> Figure 9
<p>LSTM-RNN MEMS IMU attitude errors. (<b>a</b>) Pitch angle; (<b>b</b>) Roll angle; (<b>c</b>) Yaw angle</p> ">
Abstract
:1. Introduction
2. Method
2.1. ARMA Model
2.2. LSTM-RNN Method
3. Experiments and Results
3.1. Error Modeling Using ARMA
3.2. Error Modeling Using LSTM-RNN
3.3. Comparisons of ARMA and LSTM-RNN
4. Discussion
- In this paper, limited by the computing capacity of the employed computer, the LSTM-RNN had a limited amount of layers, which might have a negative influence on the generation ability of LSTN-RNN and the prediction performance in the long term.
- In this paper, just one of the RNN variants LSTM-RNN were employed and evaluated in this application, and it has significant meaning to explore different LSTM-RNN structures more suitable for MEMS IMU errors modeling and de-noising.
- This method was tested only using static data, and dynamic trajectory data should be included for fully evaluating the proposed method. The noise characteristics in dynamic environment may be different from that in dynamics.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brown, A.K. GPS/ins uses low-cost mems IMU. IEEE Aerosp. Electron. Syst. Mag. 2005, 20, 3–10. [Google Scholar] [CrossRef]
- Noureldin, A.; Karamat, T.B.; Eberts, M.D.; El-Shafie, A. Performance enhancement of MEMS-based INS/GPS integration for low-cost navigation applications. IEEE Trans. Veh. Technol. 2009, 58, 1077–1096. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, J.; Jiang, C.; Zhu, L.; Lehtomäki, M.; Kaartinen, H.; Kaijaluoto, R.; Wang, Y.; Hyyppä, J.; Hyyppä, H.; et al. The accuracy comparison of three simultaneous localization and mapping (SLAM)-Based indoor mapping technologies. Sensors 2018, 18, 3228. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhu, F.; Tao, X.; Duan, R. New optimal smoothing scheme for improving relative and absolute accuracy of tightly coupled GNSS/SINS integration. GPS Solut. 2017, 21, 861–872. [Google Scholar] [CrossRef]
- Tang, J.; Chen, Y.; Chen, L.; Liu, J.; Hyyppä, J.; Kukko, A.; Kaartinen, H.; Hyyppä, H.; Chen, R. Fast fingerprint database maintenance for indoor positioning based on UGV SLAM. Sensors 2015, 15, 5311–5330. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Chen, S.; Bo, Y.; Sun, Z.; Lu, Q. Implementation and performance evaluation of a fast relocation method in a GPS/SINS/CSAC integrated navigation system hardware prototype. IEICE Electron. Express 2017, 14, 20170121. [Google Scholar] [CrossRef]
- Ma, L.; You, Z.; Liu, T.; Shi, S. Coupled integration of CSAC, MIMU, and GNSS for improved PNT performance. Sensors 2016, 16, 682. [Google Scholar] [CrossRef] [PubMed]
- Petritoli, E.; Leccese, F. Improvement of altitude precision in indoor and urban canyon navigation for small flying vehicles. In Proceedings of the 2015 IEEE Metrology for Aerospace (MetroAeroSpace), Benevento, Italy, 4–5 June 2015. [Google Scholar]
- Jiang, C.; Chen, S.; Bo, Y.; Sun, Z.; Lu, Q. Performance Analysis of GNSS Vector Tracking Loop Based GNSS/CSAC Integrated Navigation System. J. Aeronaut. Astronaut. Aviat. 2017, 49, 289–297. [Google Scholar]
- Fernández, E.; Calero, D.; Parés, M.E. CSAC Characterization and Its Impact on GNSS Clock Augmentation Performance. Sensors 2017, 17, 370. [Google Scholar] [CrossRef] [PubMed]
- Lee, B. Review of the present status of optical fiber sensors. Opt. Fiber Technol. 2003, 9, 57–79. [Google Scholar] [CrossRef]
- Narasimhappa, M.; Sabat, S.L.; Nayak, J. Fiber-optic gyroscope signal denoising using an adaptive robust Kalman filter. IEEE Sens. J. 2016, 16, 3711–3718. [Google Scholar] [CrossRef]
- Narasimhappa, M.; Nayak, J.; Terra, M.H.; Sabat, S.L. ARMA model based adaptive unscented fading Kalman filter for reducing drift of fiber optic gyroscope. Sens. Actuators A Phys. 2016, 251, 42–51. [Google Scholar] [CrossRef]
- Jiang, C.; Chen, S.; Chen, Y.; Bo, Y. Research on Chip Scale Atomic Clock Driven GNSS/SINS Deeply Coupled Navigation System for Augmented Performance. IET Radar Sonar Navig. 2018. [Google Scholar] [CrossRef]
- Eling, C.; Klingbeil, L.; Kuhlmann, H. Real-time single-frequency GPS/MEMS-IMU attitude determination of lightweight UAVs. Sensors 2015, 15, 26212–26235. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Chen, S.; Bo, Y.; Qu, Y.; Han, N. Research of fast relocation technology assisted by IMU in the GPS/SINS ultra-tightly coupled navigation system. J. Aeronaut. Astronaut. Aviat. 2016, 48, 253–259. [Google Scholar]
- El-Sheimy, N.; Hou, H.; Niu, X. Analysis and modeling of inertial sensors using Allan variance. IEEE Trans. Instrum. Meas. 2008, 57, 140–149. [Google Scholar] [CrossRef]
- Quinchia, A.G.; Falco, G.; Falletti, E.; Dovis, F.; Ferrer, C. A comparison between different error modeling of MEMS applied to GPS/INS integrated systems. Sensors 2013, 13, 9549–9588. [Google Scholar] [CrossRef] [PubMed]
- Vaccaro, R.J.; Zaki, A.S. Statistical modeling of rate gyros. IEEE Trans. Instrum. Meas. 2012, 61, 673–684. [Google Scholar] [CrossRef]
- Syed, Z.; Aggarwal, P.; Goodall, C.; Niu, X.; El-Sheimy, N. A new multi-position calibration method for MEMS inertial navigation systems. Meas. Sci. Technol. 2007, 18, 1897. [Google Scholar] [CrossRef]
- Aggarwal, P.; Syed, Z.; Niu, X.; El-Sheimy, N. A standard testing and calibration procedure for low cost MEMS inertial sensors and units. J. Navig. 2008, 61, 323–336. [Google Scholar] [CrossRef]
- Bekkeng, J.K. Calibration of a novel MEMS inertial reference unit. IEEE Trans. Instrum. Meas. 2009, 58, 1967–1974. [Google Scholar] [CrossRef]
- Kang, C.H.; Kim, S.Y.; Park, C.G. Improvement of a low cost MEMS inertial-GPS integrated system using wavelet denoising techniques. Int. J. Aeronaut. Space Sci. 2011, 12, 371–378. [Google Scholar] [CrossRef]
- Chen, D.; Han, J. Application of wavelet neural network in signal processing of MEMS accelerometers. Microsyst. Technol. 2011, 17, 1–5. [Google Scholar] [CrossRef]
- Huang, L. Auto regressive moving average (ARMA) modeling method for Gyro random noise using a robust Kalman filter. Sensors 2015, 15, 25277–25286. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Li, Z.; Xie, F.; Feng, K. Novel time series modeling methods for gyro random noise used in Internet of Things. IEEE Access 2018, 6, 47911–47921. [Google Scholar] [CrossRef]
- Wang, L.; Wei, G.; Zhu, Y.; Liu, J.; Tian, Z. Real-time modeling and online filtering of the stochastic error in a fiber optic current transducer. Meas. Sci. Technol. 2016, 27, 105103. [Google Scholar] [CrossRef]
- Bhatt, D.; Aggarwala, P.; Devabhaktunia, V.; Bhattacharyab, P. A novel hybrid fusion algorithm to bridge the period of GPS outages using low-cost INS. Expert Syst. Appl. 2014, 41, 2166–2173. [Google Scholar] [CrossRef]
- Kopáčik, A.; Kajánek, P.; Lipták, I. Systematic error elimination using additive measurements and combination of two low cost IMSs. IEEE Sens. J. 2016, 16, 6239–6248. [Google Scholar] [CrossRef]
- Yang, H.; Li, W.; Luo, T.; Liang, H.; Zhang, H.; Gu, Y.; Luo, C. Research on the Strategy of Motion Constraint-Aided ZUPT for the SINS Positioning System of a Shearer. Micromachines 2017, 8, 340. [Google Scholar] [CrossRef]
- Ning, Y.; Wang, J.; Han, H.; Tan, X.; Liu, T. An Optimal Radial Basis Function Neural Network Enhanced Adaptive Robust Kalman Filter for GNSS/INS Integrated Systems in Complex Urban Areas. Sensors 2018, 18, 3091. [Google Scholar] [CrossRef] [PubMed]
- Jerath, K.; Brennan, S.; Lagoa, C. Bridging the gap between sensor noise modeling and sensor characterization. Measurement 2018, 116, 350–366. [Google Scholar] [CrossRef]
- Bhatt, D.; Aggarwal, P.; Bhattacharya, P.; Devabhaktuni, V. An enhanced mems error modeling approach based on nu-support vector regression. Sensors 2012, 12, 9448–9466. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Fei, J. Adaptive global sliding mode control for MEMS gyroscope using RBF neural network. Math. Probl. Eng. 2015. [Google Scholar] [CrossRef]
- El-Rabbany, A.; El-Diasty, M. An efficient neural network model for de-noising of MEMS-based inertial data. J. Navig. 2004, 57, 407–415. [Google Scholar] [CrossRef]
- Xing, H.; Hou, B.; Lin, Z.; Guo, M. Modeling and Compensation of Random Drift of MEMS Gyroscopes Based on Least Squares Support Vector Machine Optimized by Chaotic Particle Swarm Optimization. Sensors 2017, 17, 2335. [Google Scholar] [CrossRef] [PubMed]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Gallicchio, C. Short-term memory of deep rnn. arXiv, 2018; arXiv:1802.00748. [Google Scholar]
- Li, X.; Wu, X. Constructing long short-term memory based deep recurrent neural networks for large vocabulary speech recognition. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, Australia, 19–24 April 2015. [Google Scholar]
- Understanding LSTM Networks. Available online: https://colah.github.io/posts/2015-08-Understanding-LSTMs (accessed on 27 August 2015).
- Hosseinyalamdary, S. Deep Kalman Filter: Simultaneous Multi-Sensor Integration and Modelling; A GNSS/IMU Case Study. Sensors 2018, 18, 1316. [Google Scholar] [CrossRef] [PubMed]
- MT Microsystems. Available online: http://www.mtmems.com/product_view.asp?id=28 (accessed on 30 September 2018).
MEMS IMU | Gyroscope | Range | ±300°/s |
Bias stability (1) | ≤10°/h | ||
Bias stability (Allan) | ≤2°/h | ||
Angle random walk | ≤10°/ | ||
Accelerometer | range | ±15 g | |
Bias stability (1) | 0.5 mg | ||
Bias stability (Allan) | 0.5 mg | ||
Power consumption | 1.5 W | ||
Weight | 250 g | ||
Size | |||
Sampling rate | 400 Hz |
X | Y | Z | |
---|---|---|---|
Raw data | 0.0247 | 0.035 | 0.056 |
ARMA | 0.017 | 0.028 | 0.042 |
X | Y | Z | |
---|---|---|---|
Raw data | 0.0247 | 0.035 | 0.056 |
Single LSTM-RNN | 0.0098 | 0.022 | 0.031 |
Length | STD | Time (s) |
---|---|---|
5 | 0.0096 | 1.25 |
10 | 0.0095 | 1.33 |
15 | 0.0063 | 2.13 |
20 | 0.0052 | 2.90 |
30 | 0.0094 | 2.98 |
Batch size | 128 |
Training epoch | 50 |
Learning rate | 0.01 |
Hidden unit amount | 1 |
X | Y | Z | |||||||
---|---|---|---|---|---|---|---|---|---|
Training Loss | STD | Time | Training Loss | STD | Time | Training Loss | STD | Time | |
Single LSTM-RNN | 0.00053 | 0.0098 | 4.52 | 0.0010 | 0.022 | 4.94 | 0.022 | 0.031 | 4.56 |
Multi-layer LSTM-RNN | 0.000467 | 0.011 | 9.31 | 0.0009 | 0.023 | 9.21 | 0.014 | 0.038 | 8.65 |
Raw data | / | 0.0246 | / | / | 0.0352 | / | / | 0.056 | / |
X | Y | Z | |||||||
---|---|---|---|---|---|---|---|---|---|
Training Loss | STD | Time | Training Loss | STD | Time | Training Loss | STD | Time | |
Single LSTM-RNN | 0.00053 | 0.0098 | 4.52 | 0.0010 | 0.022 | 4.94 | 0.022 | 0.031 | 4.56 |
Multi-layer LSTM-RNN | 0.00045 | 0.012 | 3.68 | 0.0009 | 0.024 | 3.82 | 0.017 | 0.038 | 3.76 |
Raw data | / | 0.0246 | / | / | 0.0352 | / | / | 0.056 | / |
X | Y | Z | |
---|---|---|---|
Raw data | 0.0247 | 0.035 | 0.056 |
ARMA | 0.017 | 0.028 | 0.042 |
Single LSTM-RNN | 0.0098 | 0.022 | 0.031 |
Pitch | Roll | Yaw | |
---|---|---|---|
Raw data | −5.070 | −1.952 | −3.853 |
ARMA | −4.268 | −1.601 | −1.873 |
Single LSTM-RNN | −2.231 | −0.942 | 0.826 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, C.; Chen, S.; Chen, Y.; Zhang, B.; Feng, Z.; Zhou, H.; Bo, Y. A MEMS IMU De-Noising Method Using Long Short Term Memory Recurrent Neural Networks (LSTM-RNN). Sensors 2018, 18, 3470. https://doi.org/10.3390/s18103470
Jiang C, Chen S, Chen Y, Zhang B, Feng Z, Zhou H, Bo Y. A MEMS IMU De-Noising Method Using Long Short Term Memory Recurrent Neural Networks (LSTM-RNN). Sensors. 2018; 18(10):3470. https://doi.org/10.3390/s18103470
Chicago/Turabian StyleJiang, Changhui, Shuai Chen, Yuwei Chen, Boya Zhang, Ziyi Feng, Hui Zhou, and Yuming Bo. 2018. "A MEMS IMU De-Noising Method Using Long Short Term Memory Recurrent Neural Networks (LSTM-RNN)" Sensors 18, no. 10: 3470. https://doi.org/10.3390/s18103470
APA StyleJiang, C., Chen, S., Chen, Y., Zhang, B., Feng, Z., Zhou, H., & Bo, Y. (2018). A MEMS IMU De-Noising Method Using Long Short Term Memory Recurrent Neural Networks (LSTM-RNN). Sensors, 18(10), 3470. https://doi.org/10.3390/s18103470