Noninvasive Glucose Monitoring with a Contact Lens and Smartphone
"> Figure 1
<p>System of using a smartphone for detecting the thickness of the PBA-based HEMA contact lens. A portable noninvasive contact lens with an imaging program in a smartphone for an ideal method for sensing diabetes patients whose tear fluid contains glucose. The key feature is the reversible covalent interaction of boronic acid in HEMA and glucose. The volume of the PBA-based HEMA changes simultaneously with the glucose level.</p> "> Figure 2
<p>Synthetic process and fabrication of the PBA-based HEMA contact lens. (<b>a</b>) To obtain a contact lens sensitive to the glucose level. The synthesis process of the PBA-based HEMA contact lens including HEMA-OTs, fabrication of the contact lenses, and modification of 3-phenylboronic acid on HEMA-PBA. (<b>b</b>) Schematic of the PBA-based contact lens molding process. HEMA-PBA mixture was added to each mold, and cured with 365 nm UV. Then, the PBA-based HEMA contact lenses were formed in the mold, then demolded. (<b>c</b>) The photograph of the PBA-based HEMA contact lens was fabricated using (<b>b</b>).</p> "> Figure 3
<p>Properties of the PBA-based HEMA contact lens at different glucose levels. (<b>a</b>) Schematic illustration of the PBA-based HEMA contact lens. Principle of glucose detection in different glucose concentrations (0, 0.1 and 0.6 mM). (<b>b</b>) PBA-based HEMA contact lens at different glucose levels as observed with a Leica DVM6 digital microscope. Different colors represent the distance in the <span class="html-italic">z</span>-axis between the underside and surface of the contact lens.</p> "> Figure 4
<p>System hardware design for detecting the thickness of a PBA-based HEMA contact lens. (<b>a</b>) A stable distance for detecting the thickness of the PBA-based HEMA contact lens was used as the platform with a smartphone (HTC M9+ with a Sony IMX230 photosensitive sensor). (<b>b</b>) The schematic illustration of the system hardware configuration of the emission device. (<b>c</b>) Photograph of a microcontroller (Arduino M0 Pro, left) powered by a 3.7 V power supply and Bluetooth module (HM-11, right) that could be controlled using a smartphone-triggered LED light and receive the image easily.</p> "> Figure 5
<p>Automatic recognition of the thickness of the PBA-based HEMA contact lens glucose sensing using imaging processing. (<b>a</b>) Schematic of the PBA-based HEMA contact lens at different glucose levels. Different colors represent differences in the z-axis between the underside and surface of the contact lens (Top). Photograph of the platform with a smartphone used as the red-light source detection device (Down). (<b>b</b>) Photograph of the imaging processing: (I) Original image is segmented into three color domains, RGB converted to the gray level and the threshold to a binary image; (II) perform pre-segmentation on the area of interest and set the threshold; (III) find endpoints in the binary image and perform segmentation in the space domain for a morphologically close image; (IV) remove small objects from the binary image; (V) target the red light area and reference; (VI) measure the properties of the imaged regions and quantify the ratio of the red light area and reference.</p> "> Figure 6
<p>Calibration curve for the image detection ratio and thickness. The parameters are calculated according to the area of the red-light circle divided by the area of the sample edge. Three different thicknesses were considered: 0.135, 2.247 and 5.343 mm. The parameters were 0.418, 0.462 and 0.549, respectively.</p> "> Figure 7
<p>Continuous and reversible glucose sensing. PBA-based HEMA contact lens for continuous sensing in 0 and 20 mM glucose solvent. The trial was repeated three times.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of the Polydimethylsiloxane (PDMS) Samples
2.2. Fabrication of the PBA-Based HEMA Contact Lens
2.3. Characteristics of the PDMS Samples and PBA-Based HEMA Contact Lens
2.4. Glucose Response of the PBA-Based HEMA Contact Lens
2.5. Light-Emitting Diode (LED) Detector Module for Detecting Thickness
2.6. Real-Time Image Processing
2.7. Continuous Glucose Monitoring
2.8. Cell Cytotoxicity Analysis
2.9. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Association, A.D. Standards of medical care in diabetes—2015 abridged for primary care providers. Clin. Diabetes Publ. Am. Diabetes Assoc. 2015, 33, 97. [Google Scholar]
- NCD Risk Factor Collaboration. Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4· 4 million participants. Lancet 2016, 387, 1513–1530. [Google Scholar] [CrossRef]
- Ripsin, C.M.; Kang, H.; Urban, R.J. Management of blood glucose in type 2 diabetes mellitus. Am. Fam. Phys. 2009, 79, 29–36. [Google Scholar]
- Wilson, R.; Turner, A. Glucose oxidase: An ideal enzyme. Biosens. Bioelectron. 1992, 7, 165–185. [Google Scholar] [CrossRef]
- Hassan, C.M.; Doyle, F.J.; Peppas, N.A. Dynamic Behavior of Glucose-Responsive Poly(methacrylic acid-g-ethylene glycol) Hydrogels. Macromolecules 1997, 30, 6166–6173. [Google Scholar] [CrossRef]
- Liu, J.; Agarwal, M.; Varahramyan, K. Glucose sensor based on organic thin film transistor using glucose oxidase and conducting polymer. Sens. Actuators B Chem. 2008, 135, 195–199. [Google Scholar] [CrossRef]
- Weibel, M.K.; Bright, H.J. The glucose oxidase mechanism interpretation of the pH dependence. J. Biol. Chem. 1971, 246, 2734–2744. [Google Scholar] [PubMed]
- Zhang, J.; Hodge, W.; Hutnick, C.; Wang, X. Noninvasive diagnostic devices for diabetes through measuring tear glucose. J. Diabetes Sci. Technol. 2011, 5, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, A.; Kurata, T.; Shiino, D.; Kataoka, K. Swelling and shrinking kinetics of totally synthetic, glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety. Macromolecules 2004, 37, 1502–1510. [Google Scholar] [CrossRef]
- Kikuchi, A.; Suzuki, K.; Okabayashi, O.; Hoshino, H.; Kataoka, K.; Sakurai, Y.; Okano, T. Glucose-sensing electrode coated with polymer complex gel containing phenylboronic acid. Anal. Chem. 1996, 68, 823–828. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Fang, H.; Wang, B. Boronolectins and fluorescent boronolectins: An examination of the detailed chemistry issues important for the design. Med. Res. Rev. 2005, 25, 490–520. [Google Scholar] [CrossRef] [PubMed]
- Miyata, T. Preparation of smart soft materials using molecular complexes. Polym. J. 2010, 42, 277. [Google Scholar] [CrossRef]
- Fang, H.; Kaur, G.; Wang, B. Progress in boronic acid-based fluorescent glucose sensors. J. Fluoresc. 2004, 14, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Taskin, O.S.; Yilmaz, G.; Yagci, Y. Fullerene-attached polymeric homogeneous/heterogeneous photoactivators for visible-light-induced CuAAC click reactions. ACS Macro Lett. 2015, 5, 103–107. [Google Scholar] [CrossRef]
- Zhu, H.; Isikman, S.O.; Mudanyali, O.; Greenbaum, A.; Ozcan, A. Optical imaging techniques for point-of-care diagnostics. Lab Chip 2013, 13, 51–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mudanyali, O.; Dimitrov, S.; Sikora, U.; Padmanabhan, S.; Navruz, I.; Ozcan, A. Integrated rapid-diagnostic-test reader platform on a cellphone. Lab Chip 2012, 12, 2678–2686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, H.; Koo, Y.; Collins, B.; Gomez, F.; Yun, Y.; Sankar, J. Paper-based microfluidic point-of-care diagnostic devices for monitoring drug metabolism. J. Nanomed. Biother. Discov. 2013, 3, e122. [Google Scholar] [CrossRef]
- Chang, K.S.; Chen, C.C.; Sheu, J.T.; Li, Y.-K. Detection of an uncharged steroid with a silicon nanowire field-effect transistor. Sens. Actuators B Chem. 2009, 138, 148–153. [Google Scholar] [CrossRef]
- Vashist, S.K.; Mudanyali, O.; Schneider, E.M.; Zengerle, R.; Ozcan, A. Cellphone-based devices for bioanalytical sciences. Anal. Bioanal. Chem. 2014, 406, 3263–3277. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.C.; Callahan, B.; Callahan, P.; Burnett, L. Mobile image ratiometry: A new method for instantaneous analysis of rapid test strips. Nat. Preced. 2012. [Google Scholar] [CrossRef] [Green Version]
- Wei, Q.; Qi, H.; Luo, W.; Tseng, D.; Ki, S.J.; Wan, Z.; Göröcs, Z.; Bentolila, L.A.; Wu, T.-T.; Sun, R.; et al. Fluorescent imaging of single nanoparticles and viruses on a smart phone. ACS Nano 2013, 7, 9147–9155. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.A.; Yang, C. A smartphone-based chip-scale microscope using ambient illumination. Lab Chip 2014, 14, 3056–3063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awqatty, B.; Samaddar, S.; Cash, K.J.; Clark, H.A.; Dubach, J.M. Fluorescent sensors for the basic metabolic panel enable measurement with a smart phone device over the physiological range. Analyst 2014, 139, 5230–5238. [Google Scholar] [CrossRef] [PubMed]
- Jung, W.; Kim, J.; Jeon, M.; Chaney, E.J.; Stewart, C.N.; Boppart, S.A. Handheld optical coherence tomography scanner for primary care diagnostics. IEEE Trans. Biomed. Eng. 2011, 58, 741–744. [Google Scholar] [CrossRef] [PubMed]
- So, C.-F.; Choi, K.-S.; Wong, T.K.; Chung, J.W. Recent advances in noninvasive glucose monitoring. Med. Devices (Auckland, NZ) 2012, 5, 45. [Google Scholar] [Green Version]
- Ho, W.-J.; Chen, J.-S.; Ker, M.-D.; Wu, T.-K.; Wu, C.-Y.; Yang, Y.-S.; Li, Y.-K.; Yuan, C.-J. Fabrication of a miniature CMOS-based optical biosensor. Biosens. Bioelectron. 2007, 22, 3008–3013. [Google Scholar] [CrossRef] [PubMed]
- Lane, J.D.; Krumholz, D.M.; Sack, R.A.; Morris, C. Tear Glucose Dynamics in Diabetes Mellitus. Curr. Eye Res. 2006, 31, 895–901. [Google Scholar] [CrossRef] [PubMed]
- la Belle, J.; Adams, A.; Lin, C.; Engelschall, E.; Pratt, B.; Cook, C.B. Self-Monitoring of Tear Glucose: The Development of a Tear Based Glucose Sensor as an Alternative to Self-Monitoring of Blood Glucose. Chem. Commun. 2016, 52, 9197–9204. [Google Scholar] [CrossRef] [PubMed]
- Chu, M.X.; Miyajima, K.; Takahashi, D.; Arakawa, T.; Sano, K.; Sawada, S.-I.; Kudo, H.; Iwasaki, Y.; Akiyoshi, K.; Mochizuki, M.; et al. Soft contact lens biosensor for in situ monitoring of tear glucose as non-invasive blood sugar assessment. Talanta 2011, 83, 960–965. [Google Scholar] [CrossRef] [PubMed]
- Badugu, R.; Lakowicz, J.R.; Geddes, C.D. A glucose sensing contact lens: A non-invasive technique for continuous physiological glucose monitoring. J. Fluoresc. 2003, 13, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Tolosa, L.; Gryczynski, I.; Eichhorn, L.R.; Dattelbaum, J.D.; Castellano, F.N.; Rao, G.; Lakowicz, J.R. Glucose sensor for low-cost lifetime-based sensing using a genetically engineered protein. Anal. Biochem. 1999, 267, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Kabasakalian, P.; Kalliney, S.; Westcott, A. Enzymatic blood glucose determination by colorimetry of N, N-diethylaniline-4-aminoantipyrine. Clin. Chem. 1974, 20, 606–607. [Google Scholar] [PubMed]
- Liao, Y.-T.; Yao, H.; Lingley, A.; Parviz, B.; Otis, B.P. A 3-μW CMOS Glucose Sensor for Wireless Contact-Lens Tear Glucose Monitoring. IEEE J. Solid-State Circuits 2012, 47, 335–344. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.; Kim, S.-Y.; Cheong, W.H.; Jang, J.; Park, Y.-G.; Na, K.; Kim, Y.-T.; Heo, J.H.; Lee, C.Y.; et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci. Adv. 2018, 4, eaap9841. [Google Scholar] [CrossRef] [PubMed]
- Laukhin, V.; Sánchez, I.; Moya, A.; Laukhina, E.; Martin, R.; Ussa, F.; Rovira, C.; Guimera, A.; Villa, R.; Aguiló, J.; et al. Non-invasive intraocular pressure monitoring with a contact lens engineered with a nanostructured polymeric sensing film. Sens. Actuators Phys. 2011, 170, 36–43. [Google Scholar] [CrossRef]
- Chen, G.-Z.; Chan, I.-S.; Lam, D.C. Capacitive contact lens sensor for continuous non-invasive intraocular pressure monitoring. Sens. Actuators Phys. 2013, 203, 112–118. [Google Scholar] [CrossRef]
- Piso, D.; Veiga-Crespo, P.; Vecino, E. Modern monitoring intraocular pressure sensing devices based on application specific integrated circuits. J. Biomater. Nanobiotechnol. 2012, 3, 301. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, X.-L.; Li, Z.-H.; Zhu, Z.-G.; Qian, S.-H.; Flewitt, A. Current and Emerging Technology for Continuous Glucose Monitoring. Sensors 2017, 17, 182. [Google Scholar] [CrossRef] [PubMed]
- Badugu, R.; Lakowicz, J.R.; Geddes, C.D. A glucose-sensing contact lens: From bench top to patient. Curr. Opin. Biotechnol. 2005, 16, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Dong, Z.-Q.; Shen, J.-H.; Chen, H.-W.; Zhu, Y.-H.; Zhu, Z.-G. 2D Photonic Crystal Hydrogel Sensor for Tear Glucose Monitoring. ACS Omega 2018, 3, 3211–3217. [Google Scholar] [CrossRef]
- Bandodkar, A.J.; Imani, S.; Nuñez-Flores, R.; Kumar, R.; Wang, C.; Mohan, A.V.; Wang, J.; Mercier, P.P. Re-usable electrochemical glucose sensors integrated into a smartphone platform. Biosens. Bioelectron. 2018, 101, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Marcheselli, C.; Afanasiev, A.; Lähdesmäki, I.; Parviz, B. A soft hydrogel contact lens with an encapsulated sensor for tear glucose monitoring. In Proceedings of the 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), Paris, France, 29 January–2 February 2012; pp. 769–772. [Google Scholar]
- Sen, D.; Sarin, G. Tear glucose levels in normal people and in diabetic patients. Br. J. Ophthalmol. 1980, 64, 693–695. [Google Scholar] [CrossRef] [PubMed]
- Chiou, J.-C.; Hsu, S.-H.; Huang, Y.-C.; Yeh, G.-T.; Liou, W.-T.; Kuei, C.-K. A wirelessly powered smart contact lens with reconfigurable wide range and tunable sensitivity sensor readout circuitry. Sensors 2017, 17, 108. [Google Scholar] [CrossRef] [PubMed]
- Albarrán, C.; Pons, A.; Lorente, A.; Montés, R.; Artigas, J. Influence of the tear film on optical quality of the eye. Contact Lens Anterior Eye 1997, 20, 129–135. [Google Scholar] [CrossRef]
- Abelman, H.; Abelman, S. Components of lens power that regulate surface principal powers and relative meridians independently. Int. J. Optics 2016, 2016, 8103891. [Google Scholar] [CrossRef]
- Efron, N. Contact Lens Practice E-Book; Elsevier Health Sciences: Oxford, UK, 2016. [Google Scholar]
- Cho, S.H.; Duy, H.T.; Han, J.W.; Hwang, H. Multi-Level Thresholding based on Non-Parametric Approaches for Fast Segmentation. J. Biosyst. Eng. 2013, 38, 149–162. [Google Scholar] [CrossRef]
- Oliva, D.; Cuevas, E.; Pajares, G.; Zaldivar, D.; Perez-Cisneros, M. Multilevel thresholding segmentation based on harmony search optimization. J. Appl. Math. 2013, 2013, 575414. [Google Scholar] [CrossRef]
- Mukhopadhyay, P.; Chaudhuri, B.B. A survey of Hough Transform. Pattern Recogn. 2015, 48, 993–1010. [Google Scholar] [CrossRef]
- Bouaziz, A.; Draa, A.; Chikhi, S. Artificial bees for multilevel thresholding of iris images. Swarm Evol. Comput. 2015, 21, 32–40. [Google Scholar] [CrossRef]
- Bandodkar, A.J.; Wang, J. Non-invasive wearable electrochemical sensors: A review. Trends Biotechnol. 2014, 32, 363–371. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-R.; Hung, C.-C.; Chiu, H.-Y.; Chang, P.-H.; Li, B.-R.; Cheng, S.-J.; Yang, J.-W.; Lin, S.-F.; Chen, G.-Y. Noninvasive Glucose Monitoring with a Contact Lens and Smartphone. Sensors 2018, 18, 3208. https://doi.org/10.3390/s18103208
Lin Y-R, Hung C-C, Chiu H-Y, Chang P-H, Li B-R, Cheng S-J, Yang J-W, Lin S-F, Chen G-Y. Noninvasive Glucose Monitoring with a Contact Lens and Smartphone. Sensors. 2018; 18(10):3208. https://doi.org/10.3390/s18103208
Chicago/Turabian StyleLin, You-Rong, Chin-Chi Hung, Hsien-Yi Chiu, Po-Han Chang, Bor-Ran Li, Sheng-Jen Cheng, Jia-Wei Yang, Shien-Fong Lin, and Guan-Yu Chen. 2018. "Noninvasive Glucose Monitoring with a Contact Lens and Smartphone" Sensors 18, no. 10: 3208. https://doi.org/10.3390/s18103208
APA StyleLin, Y. -R., Hung, C. -C., Chiu, H. -Y., Chang, P. -H., Li, B. -R., Cheng, S. -J., Yang, J. -W., Lin, S. -F., & Chen, G. -Y. (2018). Noninvasive Glucose Monitoring with a Contact Lens and Smartphone. Sensors, 18(10), 3208. https://doi.org/10.3390/s18103208