Discrimination between Alternative Herbal Medicines from Different Categories with the Electronic Nose
<p>Research steps.</p> "> Figure 2
<p>Physical appearances of the 12 categories of herbal medicine.</p> "> Figure 3
<p>Layout of self-assembled E-nose system.</p> "> Figure 4
<p>Experiment process for one single sample.</p> "> Figure 5
<p>Sensor responses to Astragalus given by the E-nose system (voltage (v) versus time (0.01 s)).</p> "> Figure 6
<p>Distribution of samples after PCA.</p> "> Figure 7
<p>Confidence values and credibility levels for 12 herbal medicine classifications with CP-1NN.</p> "> Figure 8
<p>Confidence and credibility for 12 herbal medicine classifications with CP-3NN.</p> ">
Abstract
:1. Introduction
2. Conformal Prediction
2.1. Definition
2.2. Nonconformity Measure
2.3. Offline Conformal Prediction
3. Experiments and Data Processing
3.1. Medicine Selection and Preprocessing
3.2. Self-Assembled Electronic Nose System and Experiment
3.3. Data Processing and Feature Extraction
- 1.
- Maximum Value
- 2.
- Integral Value
- 3–8.
- Exponential moving average of the derivative of V [41]
4. Results and Discussion
4.1. Performances of Simple Predictors
4.2. PCA Analysis
4.3. Performance of Conformal Prediction
4.4. Implications and Discussions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DT | Decision Tree |
NB | Naive Bayes |
SVM | Support Vector Machine |
LDA | Linear Discriminant Analysis |
PCA | Principal Component Analysis |
KNN | K-Nearest Neighbors |
CP | Conformal Prediction |
TCM | Traditional Chinese Medicine |
References
- Efferth, T.; Li, P.C.; Konkimalla, V.S.; Kaina, B. From traditional Chinese medicine to rational cancer therapy. Trends Mol. Med. 2007, 8, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, Y.; Xu, K. Fast discrimination of traditional Chinese medicine according to geographical origins with FTIR spectroscopy and advanced pattern recognition techniques. Opt. Express 2006, 17, 7630–7635. [Google Scholar] [CrossRef]
- Cho, I.H.; Lee, H.J.; Kim, Y.S. Differences in the Volatile Compositions of Ginseng Species (Panax sp.). J. Agric. Food Chem. 2012, 31, 7616–7622. [Google Scholar] [CrossRef] [PubMed]
- De Vito, S.; Piga, M.; Martinotto, L.; Di Francia, G. CO, NO2 and NOx urban pollution monitoring with on-field calibrated electronic nose by automatic bayesian regularization. Sens. Actuators B Chem. 2009, 1, 182–191. [Google Scholar] [CrossRef]
- Zhang, L.; Tian, F.; Nie, H.; Dang, L.; Li, G.; Ye, Q.; Kadri, C. Classification of multiple indoor air contaminants by an electronic nose and a hybrid support vector machine. Sens. Actuators B Chem. 2012, 11, 114–125. [Google Scholar] [CrossRef]
- Wilson, A.D.; Baietto, M. Applications and Advances in Electronic-Nose Technologies. Sensors 2009, 7, 5099–5148. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, R.; Sivret, E.C.; Parcsi, G.; Lebrero, R.; Wang, X.; Suffet, I.H.; Stuetz, R.M. Monitoring techniques for odour abatement assessment. Water Res. 2010, 18, 5129–5149. [Google Scholar] [CrossRef] [PubMed]
- Gębicki, J.; Dymerski, T.; Namiesnik, J. Monitoring of odour nuisance from landfill using electronic nose. Chem. Eng. Trans. 2014, 40, 85–90. [Google Scholar]
- Schmekel, B.; Winquist, F.; Vikström, A. Analysis of breath samples for lung cancer survival. Anal. Chim. Acta 2014, 1–2, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Montuschi, P.; Mores, N.; Mondino, C.; Barnes, P.J. The Electronic Nose in Respiratory Medicine. Respiration 2013, 1, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Castro, M.; Feller, J.F. An e-nose made of carbon nanotube based quantum resistive sensors for the detection of eighteen polar/nonpolar VOC biomarkers of lung cancer. J. Mater. Chem. B 2013, 36, 4563–4575. [Google Scholar] [CrossRef]
- Pavlou, A.K.; Magan, N.; Mcnulty, C.; Jones, J.; Sharp, D.; Brown, J.; Turner, A.P. Use of an electronic nose system for diagnoses of urinary tract infections. Biosens. Bioelectron. 2008, 10, 893–899. [Google Scholar] [CrossRef]
- Kodogiannis, V.S.; Lygouras, J.N.; Tarczynski, A.; Chowdrey, H.S. Artificial Odor Discrimination System Using Electronic Nose and Neural Networks for the Identification of Urinary Tract Infection. IEEE Trans. Inf. Technol. Biomed. 2008, 6, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Covington, J.A.; Westenbrink, E.W.; Ouaret, N.; Harbord, R.; Bailey, C.; O’Connell, N.; Cullis, J.; Williams, N.; Nwokolo, C.U.; Bardhan, K.D.; et al. Application of a Novel Tool for Diagnosing Bile Acid Diarrhoea. Sensors 2013, 9, 11899–11912. [Google Scholar] [CrossRef] [PubMed]
- Musatov, V.Y.; Sysoev, V.V.; Sommer, M.; Kiselev, I. Assessment of meat freshness with metal oxide sensor microarray electronic nose: A practical approach. Sens. Actuators B Chem. 2010, 1, 99–103. [Google Scholar] [CrossRef]
- Baldwin, E.A.; Bai, J.; Plotto, A.; Dea, S. Electronic Noses and Tongues: Applications for the Food and Pharmaceutical Industries. Sensors 2011, 5, 4744–4766. [Google Scholar] [CrossRef] [PubMed]
- Ragazzo-Sanchez, J.A.; Chalier, P.; Chevalier-Lucia, D.; Calderon-Santoyo, M.; Ghommidh, C. Off-flavours detection in alcoholic beverages by electronic nose coupled to GC. Sens. Actuators B Chem. 2009, 1, 29–34. [Google Scholar] [CrossRef]
- Wojnowski, W.; Majchrzak, T.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Portable Electronic Nose Based on Electrochemical Sensors for Food Quality Assessment. Sensors 2017, 12, 2715. [Google Scholar] [CrossRef] [PubMed]
- Loutfi, A.; Coradeschi, S.; Mani, G.K.; Shankar, P.; Rayappan, J.B.B. Electronic noses for food quality: A review. J. Food Eng. 2015, 144, 103–111. [Google Scholar] [CrossRef]
- Macías Macías, M.; Agudo, J.E.; García Manso, A.; García Orellana, C.J.; González Velasco, H.M.; Gallardo Caballero, R. A Compact and Low Cost Electronic Nose for Aroma Detection. Sensors 2013, 5, 5528. [Google Scholar] [CrossRef] [PubMed]
- Majchrzak, T.; Wojnowski, W.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Electronic noses in classification and quality control of edible oils: A review. Food Chem. 2018, 246, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, M.; Wang, S. Processing characteristics and flavour of full lotus root powder beverage. J. Sci. Food Agric. 2010, 14, 2482–2489. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.; Durán, C.; Reyes, A. Electronic Nose for Quality Control of Colombian Coffee through the Detection of Defects in “Cup Tests”. Sensors 2010, 1, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, X.R.; Wang, G.L.; Nie, L.X.; Yang, Y.J.; Wu, H.Z.; Wei, F.; Zhang, J.; Tian, J.G.; Lin, R.C. Rapid discrimination of Chinese red ginseng and Korean ginseng using an electronic nose coupled with chemometrics. J. Pharm. Biomed. Anal. 2012, 21, 605–609. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Luo, Z.; Wang, Y.; Li, G. Comparison and data fusion of an electronic nose and near-infrared reflectance spectroscopy for the discrimination of ginsengs. Anal. Methods 2016, 6, 1265–1273. [Google Scholar] [CrossRef]
- Gammerman, A.; Vovk, V. Hedging Predictions in Machine Learning The Second Computer Journal Lecture. Comput. J. 2007, 2, 151–163. [Google Scholar] [CrossRef]
- Nouretdinov, I.; Devetyarov, D.; Vovk, V.; Burford, B.; Camuzeaux, S.; Gentry-Maharaj, A.; Tiss, A.; Smith, C.; Luo, Z.; Chervonenkis, A. Multiprobabilistic prediction in early medical diagnoses. Ann. Math. Artif. Intell. 2015, 74, 1–20. [Google Scholar] [CrossRef]
- Zhou, C.; Nouretdinov, I.; Luo, Z.; Adamskiy, D.; Randell, L.; Coldham, N.; Gammerman, A. A Comparison of Venn Machine with Platt’s Method in Probabilistic Outputs; Springer: Berlin/Heidelberg, Germany, 2011; pp. 483–490. [Google Scholar]
- Vovk, V. Conditional validity of inductive conformal predictors. Mach. Learn. 2013, 2–3, 349–376. [Google Scholar] [CrossRef]
- Vovk, V.; Gammerman, A.; Shafer, G. Algorithmic Learning in a Random World; Springer: New York, NY, USA, 2005. [Google Scholar]
- Wang, Z.; Sun, X.; Miao, J.; Wang, Y.; Luo, Z.; Li, G. Conformal Prediction Based on K-Nearest Neighbors for Discrimination of Ginsengs by a Home-Made Electronic Nose. Sensors 2017, 8, 1869. [Google Scholar] [CrossRef] [PubMed]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: New York, NY, USA, 1995; pp. 988–999. [Google Scholar]
- Kaur, R.; Kumar, R.; Gulati, A.; Ghanshyam, C.; Kapur, P.; Bhondekar, A.P. Enhancing electronic nose performance: A novel feature selection approach using dynamic social impact theory and moving window time slicing for classification of Kangra orthodox black tea (Camellia sinensis (L.) O. Kuntze). Sens. Actuators B Chem. 2012, 10, 309–319. [Google Scholar] [CrossRef]
- Breiman, L.I.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees (CART). Encycl. Ecol. 1984, 3, 358. [Google Scholar]
- Chen, Q.; Liu, A.; Zhao, J.; Ouyang, Q. Classification of tea category using a portable electronic nose based on an odor imaging sensor array. J. Pharm. Biomed. Anal. 2013, 5, 77. [Google Scholar] [CrossRef] [PubMed]
- Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 1, 21–27. [Google Scholar] [CrossRef]
- Sun, X.; Liu, L.; Wang, Z.; Miao, J.; Wang, Y.; Luo, Z.; Li, G. An optimized multi-classifiers ensemble learning for identification of ginsengs based on electronic nose. Sens. Actuators A Phys. 2017, 266, 135–144. [Google Scholar] [CrossRef]
- Wang, Y.; Miao, J.; Lyu, X.; Liu, L.; Luo, Z.; Li, G. Valid Probabilistic Predictions for Ginseng with Venn Machines Using Electronic Nose. Sensors 2016, 7, 1088. [Google Scholar] [CrossRef] [PubMed]
- Haddi, Z.; Boughrini, M.; Ihlou, S.; Amari, A. Geographical classification of Virgin Olive Oils by combining the electronic nose and tongue. Proceedings of IEEE Sensors 2012, Taipei, Taiwan, 28–31 Octobert 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Timsorn, K.; Wongchoosuk, C.; Wattuya, P.; Promdaen, S.; Sittichat, S. Discrimination of chicken freshness using electronic nose combined with PCA and ANN. In Proceedings of the International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Nakhon Ratchasima, Thailand, 14–17 May 2014; pp. 1–4. [Google Scholar]
- Muezzinoglu, M.K.; Vergara, A.; Huerta, R.; Rulkov, N.; Rabinovich, M.I.; Selverston, A.; Abarbanel, H.D.I. Acceleration of chemo-sensory information processing using transient features. Sens. Actuators B Chem. 2009, 2, 507–512. [Google Scholar] [CrossRef]
- Kiani, S.; Minaei, S.; Ghasemi-Varnamkhasti, M. Application of electronic nose systems for assessing quality of medicinal and aromatic plant products: A review. J. Appl. Res. Med. Aromat. Plants 2016, 1, 1–9. [Google Scholar] [CrossRef]
No. | Sensor Type | Specific Response Sensitivity |
---|---|---|
1 | TGS800 | Carbon monoxide, ethanol, methane, hydrogen, ammonia |
2 | TGS813 | Carbon monoxide, ethanol, methane, hydrogen, isobutane |
3 | TGS813 | Carbon monoxide, ethanol, methane, hydrogen, isobutane |
4 | TGS816 | Carbon monoxide, ethanol, methane, hydrogen, isobutane |
5 | TGS821 | Carbon monoxide, ethanol, methane, hydrogen |
6 | TGS822 | Carbon monoxide, ethanol, methane, acetone, n-hexane, |
benzene, isobutane | ||
7 | TGS822 | Carbon monoxide, ethanol, methane, acetone, |
n-Hexane, benzene, isobutane | ||
8 | TGS826 | Ammonia, trimethyl amine |
9 | TGS830 | Ethanol, R-12, R-11, R-22, R-113 |
10 | TGS832 | R-134a, R-12 and R-22, ethanol |
11 | TGS880 | Carbon monoxide, ethanol, methane, hydrogen, isobutane |
12 | TGS2620 | Methane, Carbon monoxide, isobutane, hydrogen |
13 | TGS2600 | Carbon monoxide, hydrogen |
14 | TGS2602 | Hydrogen, ammonia ethanol, hydrogen sulfide, toluene |
15 | TGS2610 | Ethanol, hydrogen, methane, isobutane/propane |
16 | TGS2611 | Ethanol, hydrogen, isobutane, methane |
Prediction Tasks and Algorithms | DT | KNN | LDA | SVM | NB | BP (Back Propagation) |
---|---|---|---|---|---|---|
12 Categories of herbal medicine | 92.17% | 91.67% | 98.33% | 98.94% | 91.33% | 90.83% |
Task and SVM Kernel | Linear | Quadratic | MLP (Multilayer Perceptron Kernel) | RBF (Radial Basis Function) |
---|---|---|---|---|
12 TCM discrimination | 98.94% | 98.92% | 82.51% | 93.69% |
The K of KNN | 1 | 3 | 5 | 7 | 9 |
---|---|---|---|---|---|
12 TCM discrimination | 91.67% | 91.50% | 90.17% | 90.00% | 88.50% |
Test Item | DT | 1NN | 3NN | LDA | SVM | NB |
Accuracy | 92.17% | 91.67% | 91.50% | 98.33% | 98.94% | 91.33% |
Time(s) | 36.605 | 0.277 | 0.293 | 37.987 | 967.555 | 166.992 |
PCA:30-D (99.74% Information) | DT | 1NN | 3NN | LDA | SVM | NB |
Accuracy | 81.83% | 91.17% | 90.67% | 95.50% | 97.64% | 87.50% |
Time(s) | 15.208 | 0.122 | 0.152 | 31.759 | 695.299 | 48.531 |
PCA:5-D (95.44% Information) | DT | 1NN | 3NN | LDA | SVM | NB |
Accuracy | 82.33% | 87.67% | 87.67% | 85.00% | 87.32% | 84.50% |
Time(s) | 6.984 | 0.081 | 0.084 | 29.778 | 252.202 | 17.679 |
Prediction Tasks | CP-1NN | CP-3NN | 1NN | 3NN |
---|---|---|---|---|
12 categories of herbal medicines | 91.50% | 92.17% | 91.67% | 91.50% |
Sample Index | True Label | Forced Prediction | Confidence | Credibility |
---|---|---|---|---|
5 | 1 (Astragalus) | 1 (Astragalus) | 0.9950 | 0.7433 |
233 | 5 (Radix Angelicae Pubescentis) | 5 (Radix Angelicae Pubescentis) | 0.9883 | 0.4650 |
384 | 8 (Codonopsis Pilosula) | 10 (Ligusticum Chuanxiong Hort) | 0.9400 | 0.1317 |
478 | 10 (Ligusticum Chuanxiong Hort) | 8 (Codonopsis Pilosula) | 0.9183 | 0.0867 |
512 | 11 (Radix Peucedani) | 11 (Radix Peucedani) | 0.9950 | 0.7383 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, X.; Guan, X.; Wu, R.; Wang, Z.; Wang, Y.; Li, G. Discrimination between Alternative Herbal Medicines from Different Categories with the Electronic Nose. Sensors 2018, 18, 2936. https://doi.org/10.3390/s18092936
Zhan X, Guan X, Wu R, Wang Z, Wang Y, Li G. Discrimination between Alternative Herbal Medicines from Different Categories with the Electronic Nose. Sensors. 2018; 18(9):2936. https://doi.org/10.3390/s18092936
Chicago/Turabian StyleZhan, Xianghao, Xiaoqing Guan, Rumeng Wu, Zhan Wang, You Wang, and Guang Li. 2018. "Discrimination between Alternative Herbal Medicines from Different Categories with the Electronic Nose" Sensors 18, no. 9: 2936. https://doi.org/10.3390/s18092936
APA StyleZhan, X., Guan, X., Wu, R., Wang, Z., Wang, Y., & Li, G. (2018). Discrimination between Alternative Herbal Medicines from Different Categories with the Electronic Nose. Sensors, 18(9), 2936. https://doi.org/10.3390/s18092936