A Hybrid Method Applied to Improve the Efficiency of Full-Waveform Inversion for Pavement Characterization
<p>The basic structure of the MLPs. There is only one hidden layer in the MLPs.</p> "> Figure 2
<p>Pavement models used to simulate the training data for MLPs. (<b>a</b>) The two layer pavement model. (<b>b</b>) The three layer pavement model. The first layer of both the two models is a thin layer with respect to the pulse width. The second layer of the three layer pavement model is a thick layer with respect to the pulse width. The electric conductivities of all layers are assumed to be negligible.</p> "> Figure 3
<p>Process of training the MLPs using simulated GPR data. The ranges of the thickness of the first layer and the ranges of the permittivities of the first two layers are divided into small intervals. Each intervals combination <math display="inline"> <semantics> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mstyle mathsize="140%" displaystyle="true"> <mi>ε</mi> </mstyle> <mrow> <mn>1</mn> <mo>,</mo> <mi>l</mi> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mstyle mathsize="140%" displaystyle="true"> <mi>h</mi> </mstyle> <mrow> <mn>1</mn> <mo>,</mo> <mi>l</mi> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mstyle mathsize="140%" displaystyle="true"> <mi>ε</mi> </mstyle> <mrow> <mn>2</mn> <mo>,</mo> <mi>l</mi> <mn>3</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math> can be assigned a label <math display="inline"> <semantics> <mrow> <msub> <mstyle mathsize="140%" displaystyle="true"> <mi>y</mi> </mstyle> <mrow> <mo stretchy="false">(</mo> <mi>l</mi> <mn>1</mn> <mo>,</mo> <mi>l</mi> <mn>2</mn> <mo>,</mo> <mi>l</mi> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> </semantics> </math>. Under this intervals combination, parameters combination <math display="inline"> <semantics> <mrow> <mrow> <mo>{</mo> <mrow> <msubsup> <mstyle mathsize="140%" displaystyle="true"> <mi>ε</mi> </mstyle> <mn>1</mn> <mrow> <mi>l</mi> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mstyle mathsize="140%" displaystyle="true"> <mi>h</mi> </mstyle> <mn>1</mn> <mrow> <mi>l</mi> <mn>2</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mstyle mathsize="140%" displaystyle="true"> <mi>ε</mi> </mstyle> <mn>2</mn> <mrow> <mi>l</mi> <mn>3</mn> </mrow> </msubsup> </mrow> <mo>}</mo> </mrow> </mrow> </semantics> </math> can be randomly generated. The parameters combination is used to simulate GPR data, and the GPR data is rearranged into the instance <math display="inline"> <semantics> <mstyle mathvariant="bold" mathsize="normal"> <mi>V</mi> </mstyle> </semantics> </math>. Then the instance <math display="inline"> <semantics> <mstyle mathvariant="bold" mathsize="normal"> <mi>V</mi> </mstyle> </semantics> </math> and the corresponding label <math display="inline"> <semantics> <mrow> <msub> <mstyle mathsize="140%" displaystyle="true"> <mi>y</mi> </mstyle> <mrow> <mrow> <mo>(</mo> <mrow> <mi>l</mi> <mn>1</mn> <mo>,</mo> <mi>l</mi> <mn>2</mn> <mo>,</mo> <mi>l</mi> <mn>3</mn> </mrow> <mo>)</mo> </mrow> </mrow> </msub> </mrow> </semantics> </math> are used to train the MLPs.</p> "> Figure 4
<p>Process of the inversion starting from the initial solution provided by the MLPs. The measured GPR data <math display="inline"> <semantics> <mrow> <msubsup> <mstyle mathsize="140%" displaystyle="true"> <mi>S</mi> </mstyle> <mrow> <mn>11</mn> </mrow> <mo>*</mo> </msubsup> <mo stretchy="false">(</mo> <mi>ω</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> on one hand is transformed into the target signal <math display="inline"> <semantics> <mrow> <msup> <mstyle mathsize="140%" displaystyle="true"> <mi>s</mi> </mstyle> <mo>*</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math>, and on the other hand is rearranged into the form of <math display="inline"> <semantics> <mstyle mathvariant="bold" mathsize="normal"> <mi>V</mi> </mstyle> </semantics> </math>. Then, <math display="inline"> <semantics> <mstyle mathvariant="bold" mathsize="normal"> <mi>V</mi> </mstyle> </semantics> </math> is fed to the well trained MLPs, and a label <math display="inline"> <semantics> <mrow> <msub> <mstyle mathsize="140%" displaystyle="true"> <mi>y</mi> </mstyle> <mrow> <mo stretchy="false">(</mo> <mi mathvariant="normal">p</mi> <mn>1</mn> <mo>,</mo> <mi mathvariant="normal">p</mi> <mn>2</mn> <mo>,</mo> <mi mathvariant="normal">p</mi> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> </semantics> </math> is predicted. According to the preset rule, the label <math display="inline"> <semantics> <mrow> <msub> <mstyle mathsize="140%" displaystyle="true"> <mi>y</mi> </mstyle> <mrow> <mo stretchy="false">(</mo> <mi mathvariant="normal">p</mi> <mn>1</mn> <mo>,</mo> <mi mathvariant="normal">p</mi> <mn>2</mn> <mo>,</mo> <mi mathvariant="normal">p</mi> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> </semantics> </math> is associated with the intervals combination <math display="inline"> <semantics> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mstyle mathsize="140%" displaystyle="true"> <mi>ε</mi> </mstyle> <mrow> <mn>1</mn> <mo>,</mo> <mi mathvariant="normal">p</mi> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mstyle mathsize="140%" displaystyle="true"> <mi>h</mi> </mstyle> <mrow> <mn>1</mn> <mo>,</mo> <mi mathvariant="normal">p</mi> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mstyle mathsize="140%" displaystyle="true"> <mi>ε</mi> </mstyle> <mrow> <mn>2</mn> <mo>,</mo> <mi mathvariant="normal">p</mi> <mn>3</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math>, and the midpoint values of these intervals are used as the initial solution. Then, the initial solution and the target signal <math display="inline"> <semantics> <mrow> <msup> <mstyle mathsize="140%" displaystyle="true"> <mi>s</mi> </mstyle> <mo>*</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> are used to perform the inversion.</p> "> Figure 5
<p>The classification accuracy of the MLPs on the test set after each iteration. The maximum classification accuracy is 98.6%, which means a GPR data can be accurately classified to the specific class according to the preset rules.</p> "> Figure 6
<p>(<b>a</b>) Time domain waveforms of the GPR data simulated by the inversion results and the target signal. Good agreement can be seen between them. (<b>b</b>) The trajectory of the objective function during the inversion process. It can be seen that the objective function is only calculated by 30 times to find the global optimal solution.</p> "> Figure 7
<p>(<b>a</b>) Time domain waveforms of the GPR data simulated by the inversion results and the target signal. Since the time range for the inversion is within 6.5 ns, good agreement between the two waveforms can be seen before 6.5 ns. (<b>b</b>) The trajectory of the objective function during the inversion process.</p> "> Figure 8
<p>The trajectory of the objective function for the inversion of the misclassified GPR data. The initial solutions derived from the misclassification result and the correct classification result are used to perform the inversion, respectively. For the misclassification result, the LM algorithm converges after 60 iterations, and for the correct classification result, the LM algorithm converges after 30 iterations. In both cases, the LM algorithm converges fast.</p> "> Figure 9
<p>The 2-D response surface topographies of the objective functions in a logarithmic scale. (a) The circle denotes the global optimal solution. (b) The square denotes the initial solution derived from the misclassification result. (c) The star denotes the initial solution derived from the correct classification result.</p> "> Figure 10
<p>(<b>a</b>) Field experiment setup with the antenna height of 0.462 m. (<b>b</b>) Red line is the interface between the first layer and second layer, the measured thickness is 29 mm. The second layer and the third layer have a similar aggregate ratio, so that the reflection from the interface between them is weak.</p> "> Figure 11
<p>The measured signal and the signal simulated by the inversion results. Significant agreement between the measured signal and the simulated signal can be seen before 6.5 ns. Signals from 7 ns to 8 ns primarily consist of the multiple reflections from the pavement surface. The difference between the measured signal and the simulated signal at 9 ns is due to the reflection between the asphalt pavement and the lime-ash soil.</p> "> Figure 12
<p>The number of calculations of the objective function during the full-waveform inversion. (<b>a</b>) Calculation number of the DE algorithm. (<b>b</b>) Calculation number of the Hybrid method. In order to find the global optimal solution, the objective function is respectively calculated by 500 times and 70 times for the DE algorithm and the hybrid method. Therefore, the hybrid method greatly improve the efficiency of the full-waveform inversion.</p> ">
Abstract
:1. Introduction
2. Principles of the Basic Methods
2.1. Principle of the GPR Modeling Method
2.2. Principle of Multilayer Perceptrons
2.3. Principle of the Hybrid Method
2.4. Principle of the Full-Waveform Inversion
3. Results and Discussion
3.1. Numerical Experiment of the Hybrid Method
3.2. Field Experiment
3.3. The Influence of Layer Thickness and Permittivity on results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lahouar, S.; Al-Qadi, I.L. Automatic detection of multiple pavement layers from GPR data. NDT E Int. 2008, 41, 69–81. [Google Scholar] [CrossRef]
- Liu, H.; Sato, M. in situ measurement of pavement thickness and dielectric permittivity by GPR using an antenna array. NDT E Int. 2014, 64, 65–71. [Google Scholar] [CrossRef]
- Zhao, S.; Shangguan, P.C.; Al-Qadi, I.L. Application of regularized deconvolution technique for predicting pavement thin layer thicknesses from ground penetrating radar data. NDT E Int. 2015, 73, 1–7. [Google Scholar] [CrossRef]
- Li, X.T. Sublayer-thickness inversion of asphalt layer from ground penetrating radar data. Nondestructive Test. Eval. 2011, 26, 187–196. [Google Scholar] [CrossRef]
- Le Bastard, C.; Baltazart, V.; Wang, Y.D.; Saillard, J. Thin-Pavement Thickness Estimation Using GPR With High-Resolution and Superresolution Methods. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2511–2519. [Google Scholar] [CrossRef]
- Le Bastard, C.; Baltazart, V.; Wang, Y.D. Support Vector Regression method applied to thin pavement thickness estimation by GPR. In Proceedings of the 14th International Conference on Ground Penetrating Radar, Shanghai, China, 4–8 June 2012. [Google Scholar]
- Lambot, S.; Slob, E.C.; van den Bosch, I.; Stockbroeckx, B.; Vanclooster, M. Modeling of ground-penetrating Radar for accurate characterization of subsurface electric properties. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2555–2568. [Google Scholar] [CrossRef]
- De Coster, A.; Van der Wielen, A.; Grégoire, C.; Lambot, S. Evaluation of pavement layer thicknesses using gpr: A comparison between full-wave inversion and the straight-ray method. Constr. Build. Mater. 2018, 168, 91–104. [Google Scholar] [CrossRef]
- Lambot, S.; Javaux, M.; Hupet, F.; Vanclooster, M. A global multilevel coordinate search procedure for estimating the unsaturated soil hydraulic properties. Water Resour. Res. 2002, 38, 6–15. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Massa, A.; Oliveri, G.; Salucci, M.; Anselmi, N.; Rocca, P. Learning-by-examples techniques as applied to electromagnetics. J. Electromagn. Waves Appl. 2018, 32, 1–26. [Google Scholar] [CrossRef]
- Williams, R.M.; Ray, L.E.; Lever, J.H.; Burzynski, A.M. Crevasse detection in ice sheets using ground penetrating radar and machine learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 12, 4836–4848. [Google Scholar] [CrossRef]
- Xie, X.Y.; Li, P.; Qin, H.; Liu, L.B.; Nobes, D.C. GPR identification of voids inside concrete based on the support vector machine algorithm. In Proceedings of the 14th International Conference on Ground Penetrating Radar, Shanghai, China, 4–8 June 2012. [Google Scholar]
- Rodrigues, J.B.; Pantoja, M.F.; Travassos, X.L.; Vieira, D.A.G.; Saldanha, R.R. A prediction algorithm for data analysis in GPR-based surveys. Neurocomputing 2015, 168, 464–474. [Google Scholar] [CrossRef]
- Xie, X.Y.; Qin, H.; Yu, C.; Liu, L.B. An automatic recognition algorithm for GPR images of RC structure voids. J. Appl. Geophys. 2013, 99, 125–134. [Google Scholar] [CrossRef]
- Shangguan, P.C.; Al-Qadi, I.L.; Lahouar, S. Pattern recognition algorithms for density estimation of asphalt pavement during compaction: A simulation study. J. Appl. Geophys. 2014, 107, 8–15. [Google Scholar] [CrossRef]
- Kilic, G. Applications of Ground-Penetration Radar (GPR) to Detect Hidden Beam Positions. J. Test. Eval. 2017, 45, 911–921. [Google Scholar] [CrossRef]
- Le Bastard, C.; Wang, Y.D.; Baltazart, V.; Derobert, X. Time delay and permittivity estimation by ground-penetrating radar with support vector regression. IEEE Geosci. Remote Sens. Lett. 2013, 11, 873–877. [Google Scholar] [CrossRef]
- Dong, Z.; Ye, S.; Gao, Y.; Fang, G.; Zhang, X.; Xue, Z.; Zhang, T. Rapid detection methods for asphalt pavement thicknesses and defects by a vehicle-mounted ground penetrating radar (gpr) system. Sensors 2016, 16, 2067. [Google Scholar] [CrossRef] [PubMed]
- Phaisangittisagul, E. An Analysis of the Regularization between L-2 and Dropout in Single Hidden Layer Neural Network. In Proceedings of the 7th international conference on intelligent systems, modeling and simulation, Bangkok, Thailand, 25–27 January 2016. [Google Scholar]
- Fan, Q.; Gao, D.Q. A fast BP networks with dynamic sample selection for handwritten recognition. Pattern Anal. Appl. 2018, 21, 67–80. [Google Scholar] [CrossRef]
- Halawa, K.; Bazan, M.; Ciskowski, P.; Janiczek, T. Road traffic predictions across major city intersections using multilayer perceptrons and data from multiple intersections located in various places. IET Intell. Transp. Syst. 2016, 10, 469–475. [Google Scholar] [CrossRef]
- Haykin, S. Multilayer Perceptrons. In Neural Networks—A Comprehensive Foundation, 2nd ed.; McMaster University: Hamilton, ON, Canada, 2008; pp. 179–268. [Google Scholar]
- Vapnik, V.N. The Nature of Statistical Learning Thoery; Springer: New York, NY, USA, 1995. [Google Scholar]
- Characterization of S5048 VNA. Available online: http://coppermountaintech.com/vna/s5048 (accessed on 31 August 2018).
- Al-Qadi, I.L.; Leng, Z.; Lahouar, S.; Beak, J. In-place hot mix asphalt density estimation using ground penetrating radar. Transport. Res. Rec. 2010, 2152, 19–27. [Google Scholar] [CrossRef]
Correct Classification | Misclassification | ||
---|---|---|---|
Algorithms | Two Layer Data | Three Layer Data | Three Layer Data |
Hybrid method | 30 | 30 | 60 |
DE | 410 | 440 | 450 |
Parameters to Be Detected | Classification Result | Initial Solution | Inversion Results | Estimation Errors |
---|---|---|---|---|
16 | ||||
34 |
Parameters to Be Detected | Classification Result | Initial Solution | Inversion Results | Estimation Errors |
---|---|---|---|---|
15 | ||||
55 |
Parameters to Be Detected | Inversion Results for Hybrid Method | Estimation Errors for Hybrid Method | Inversion Results for DE Method | Estimation Errors for DE Method |
---|---|---|---|---|
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Ye, S.; Yi, L.; Lin, Y.; Liu, H.; Fang, G. A Hybrid Method Applied to Improve the Efficiency of Full-Waveform Inversion for Pavement Characterization. Sensors 2018, 18, 2916. https://doi.org/10.3390/s18092916
Zhang J, Ye S, Yi L, Lin Y, Liu H, Fang G. A Hybrid Method Applied to Improve the Efficiency of Full-Waveform Inversion for Pavement Characterization. Sensors. 2018; 18(9):2916. https://doi.org/10.3390/s18092916
Chicago/Turabian StyleZhang, Jingwei, Shengbo Ye, Li Yi, Yuquan Lin, Hai Liu, and Guangyou Fang. 2018. "A Hybrid Method Applied to Improve the Efficiency of Full-Waveform Inversion for Pavement Characterization" Sensors 18, no. 9: 2916. https://doi.org/10.3390/s18092916
APA StyleZhang, J., Ye, S., Yi, L., Lin, Y., Liu, H., & Fang, G. (2018). A Hybrid Method Applied to Improve the Efficiency of Full-Waveform Inversion for Pavement Characterization. Sensors, 18(9), 2916. https://doi.org/10.3390/s18092916