On the Feasibility of Using an Ear-EEG to Develop an Endogenous Brain-Computer Interface
<p>Electrode positions used to record EEG data. (<b>A</b>) The brain area is divided into four regions of interests (ROIs) for data analysis (frontal, central, occipital, and ear area). (<b>B</b>) The electrode placement for ear-EEG.</p> "> Figure 2
<p>Experimental paradigm of one session used in the main experiment. In the beginning of each session, a rest period of 10 s is performed. The string ‘ABC’ and an asterisk are presented to indicate a rest period and the subject is asked to fix the eyes to the asterisk to minimize ocular movement. After the rest period, either mental arithmetic (MA) or light cognitive (LC) task is randomly performed. For MA, a pair of a three-digit number and a single-digit number between 5 and 9 is randomly presented, and the subject is asked to sequentially subtract the single-digit number from the three-digit number (e.g., 477 − 8) for 10 s. For LC, the string ‘ABC’ is presented, and the subject is asked to internally imagine vocalization of the English alphabet from A to Z with a 1 Hz speed for 10 s. Both MA and LC are performed ten times in each session, and each subject completes five sessions (50 MA and 50 LC in total). A short beep (300 ms) is presented at every screen transition (red speaker icons).</p> "> Figure 3
<p>Grand average time-frequency maps with eyes closed (EC) and eyes opened (EO) for (<b>A</b>) frontal, (<b>B</b>) central, (<b>C</b>) occipital, and (<b>D</b>) ear area. The color scale was chosen to fit the range for (<b>D</b>) ear area.</p> "> Figure 4
<p>Grand average ERD/ERS maps of all electrodes during MA. The four regions of interest (ROIs), frontal, central, occipital, and ear area, are denoted by four different colored lines and titles for each map (green, orange, red, and gray), respectively. The x- and y-axis of each map indicate the task time from −2–10 s based on task onset (t = 0 s), and the frequency band ranging from 1 to 50 Hz, respectively. ERD and ERS are presented in blue and red, respectively. Note that scalp- and ear-EEG are independently re-referenced using a CAR and a modified CAR, respectively.</p> "> Figure 5
<p>Grand average ERD/ERS maps of all electrodes during LC. The four regions of interest (ROIs), frontal, central, occipital, and ear area, are denoted by four different colored lines and titles for each map (green, orange, red, and gray), respectively. The x- and y-axis of each map indicate the task time from −2–10 s based on task onset (t = 0 s), and the frequency band ranging from 1 to 50 Hz, respectively. ERD and ERS are presented in blue and red, respectively. Note that scalp- and ear-EEG are independently re-referenced using a CAR and a modified CAR, respectively.</p> "> Figure 6
<p>Grand average ERD/ERS maps of each ROI during MA and LC, and their differences (MA-LC). The ERD/ERS maps of ear area (denoted by ‘Ear’) are obtained by averaging the six electrodes attached behind both ears (three electrode for each side). The x- and y-axis of each map indicate the task time from −2–10 s based on task onset (t = 0 s), and the frequency band ranging from 1 to 50 Hz, respectively. ERD and ERS are presented in blue and red, respectively.</p> "> Figure 7
<p>(<b>A</b>) Electrode positions used to create each ROI, and (<b>B</b>) the mean classification accuracies of the four ROIs with that obtained using all electrodes (‘Scalp’), excluding the six ear electrodes. Each ROI was individually re-referenced, where a CAR was used for the scalp ROIs (‘Scalp’, ‘Frontal’, ‘Central’, and ‘Occipital’) while the mean of three electrodes attached on an opposite ear area was used as a reference signal for ear ROI (‘Ear’). Error bars indicate standard deviations of the estimated classification accuracies of each ROI. There is no significant difference between the four ROIs (Friedman test; <span class="html-italic">p</span> = 0.63).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. EEG Measurement
2.3. Experimental Paradigm
2.4. EEG Data Analysis
3. Results
3.1. Alpha Power Changes during EC and EO
3.2. ERD/ERS Pattern Maps during MA and LC
3.3. Classification Performance
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Bauer, G.; Gerstenbrand, F.; Rumpl, E. Varieties of the locked-in syndrome. J. Neurol. 1979, 221, 77–91. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Zhang, R.; Wang, Q.; Chen, Y.; Yang, T.; Feng, Z.; Zhang, Y.; Shao, M.; Li, Y. A P300-based threshold-free brain switch and its application in wheelchair control. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Allison, B.Z.; Dunne, S.; Leeb, R.; Millán, J.; Nijholt, A. Recent and upcoming BCI progress: Overview, analysis, and recommendations. In Towards Practical Brain-Computer Interfaces: Bridging the Gap from Research to Real-World Applications; Springer: Berlin, Germany, 2013; pp. 1–13. [Google Scholar]
- Eric, C.L.; Gerwin, S.; Jonathan, R.W.; Jeffrey, G.O.; Daniel, W.M. A brain-computer interface using electrocorticographic signals in humans. J. Neural Eng. 2004, 1, 63. [Google Scholar]
- Alan, D.D.; Shivayogi, V.H.; Ying, Y.; Stephen, F.; Jennifer, L.C.; Michael, B.; Elizabeth, C.T.-K.; Wei, W. Remapping cortical modulation for electrocorticographic brain-computer interfaces: A somatotopy-based approach in individuals with upper-limb paralysis. J. Neural Eng. 2018, 15, 026021. [Google Scholar]
- Wolpaw, J.R.; Birbaumer, N.; McFarland, D.J.; Pfurtscheller, G.; Vaughan, T.M. Brain-computer interfaces for communication and control. Clin. Neurophysiol. 2002, 113, 767–791. [Google Scholar] [CrossRef]
- Shu, X.; Chen, S.; Yao, L.; Sheng, X.; Zhang, D.; Jiang, N.; Jia, J.; Zhu, X. Fast recognition of BCI-inefficient users using physiological features from EEG signals: A screening study of stroke patients. Front. Neurosci. 2018, 12. [Google Scholar] [CrossRef] [PubMed]
- Mellinger, J.; Schalk, G.; Braun, C.; Preissl, H.; Rosenstiel, W.; Birbaumer, N.; Kubler, A. An MEG-based brain-computer interface (BCI). NeuroImage 2007, 36, 581–593. [Google Scholar] [CrossRef] [PubMed]
- Corsi, M.-C.; Chavez, M.; Schwartz, D.; Hugueville, L.; Khambhati, A.N.; Bassett, D.S.; Fallani, F.D.V. Integrating EEG and MEG signals to improve motor imagery classification in brain-computer interface. Int. J. Neural Syst 2018, 38, 1850014. [Google Scholar] [CrossRef] [PubMed]
- Sitaram, R.; Zhang, H.; Guan, C.; Thulasidas, M.; Hoshi, Y.; Ishikawa, A.; Shimizu, K.; Birbaumer, N. Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface. NeuroImage 2007, 34, 1416–1427. [Google Scholar] [CrossRef] [PubMed]
- Naseer, N.; Hong, K.-S. fNIRS-based brain-computer interfaces: A review. Front. Hum. Neurosci. 2015, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Weiskopf, N.; Mathiak, K.; Bock, S.W.; Scharnowski, F.; Veit, R.; Grodd, W.; Goebel, R.; Birbaumer, N. Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI). IEEE Trans. Biomed. Eng. 2004, 51, 966–970. [Google Scholar] [CrossRef] [PubMed]
- Sokunbi, M.O. Using real-time fMRI brain-computer interfacing to treat eating disorders. J. Neurol. Sci. 2018, 388, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.-J.; Kim, S.; Choi, S.; Im, C.-H. EEG-based brain-computer interfaces: A thorough literature survey. Int. J. Hum. Comput. Interact. 2013, 29, 814–826. [Google Scholar] [CrossRef]
- Bleichner, M.G.; Lundbeck, M.; Selisky, M.; Minow, F.; Jager, M.; Emkes, R.; Debener, S.; De Vos, M. Exploring miniaturized EEG electrodes for brain-computer interfaces. An EEG you do not see? Physiol. Rep. 2015, 3, e12362. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, K.B.; Kappel, S.L.; Mandic, D.P.; Kidmose, P. EEG recorded from the ear: Characterizing the ear-EEG method. Front. Neurosci. 2015, 9, 438. [Google Scholar] [CrossRef] [PubMed]
- Debener, S.; Emkes, R.; De Vos, M.; Bleichner, M. Unobtrusive ambulatory EEG using a smartphone and flexible printed electrodes around the ear. Sci. Rep. 2015, 5, 16743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Looney, D.; Kidmose, P.; Park, C.; Ungstrup, M.; Rank, M.; Rosenkranz, K.; Mandic, D. The in-the-ear recording concept: User-centered and wearable brain monitoring. IEEE Pulse 2012, 3, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Zibrandtsen, I.; Kidmose, P.; Otto, M.; Ibsen, J.; Kjaer, T.W. Case comparison of sleep features from ear-EEG and scalp-EEG. Sleep Sci. 2016, 9, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, K.B.; Villadsen, D.B.; Otto, M.; Kidmose, P. Automatic sleep staging using ear-EEG. Biomed. Eng. Online 2017, 16, 111. [Google Scholar] [CrossRef] [PubMed]
- Nicolas-Alonso, L.F.; Gomez-Gil, J. Brain computer interfaces, a review. Sensors 2012, 12, 1211–1279. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.W.; Hwang, H.J.; Lim, J.H.; Lee, Y.H.; Jung, K.Y.; Im, C.H. Classification of selective attention to auditory stimuli: Toward vision-free brain-computer interfacing. J. Neurosci. Methods 2011, 197, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Kidmose, P.; Looney, D.; Ungstrup, M.; Rank, M.L.; Mandic, D.P. A study of evoked potentials from ear-EEG. IEEE Trans. Biomed. Eng. 2013, 60, 2824–2830. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.-J.; Ferreria, V.Y.; Ulrich, D.; Kilic, T.; Chatziliadis, X.; Blankertz, B.; Treder, M. A gaze independent brain-computer interface based on visual stimulation through closed eyelids. Sci. Rep. 2015, 5, 15890. [Google Scholar] [CrossRef] [PubMed]
- Norton, J.J.S.; Lee, D.S.; Lee, J.W.; Lee, W.; Kwon, O.; Won, P.; Jung, S.-Y.; Cheng, H.; Jeong, J.-W.; Akce, A.; et al. Soft, curved electrode systems capable of integration on the auricle as a persistent brain-computer interface. Proc. Natl. Acad. Sci. USA 2015, 112, 3920–3925. [Google Scholar] [CrossRef] [PubMed]
- Bleichner, M.G.; Mirkovic, B.; Debener, S. Identifying auditory attention with ear-EEG: cEEGrid versus high-density cap-EEG comparison. J. Neural Eng. 2016, 13, 066004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiedler, L.; Wostmann, M.; Graversen, C.; Brandmeyer, A.; Lunner, T.; Obleser, J. Single-channel in-ear-EEG detects the focus of auditory attention to concurrent tone streams and mixed speech. J. Neural Eng. 2017, 14, 036020. [Google Scholar] [CrossRef] [PubMed]
- Won, D.O.; Hwang, H.J.; Kim, D.M.; Müller, K.R.; Lee, S.W. Motion-based rapid serial visual presentation for gaze-independent brain-computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.J.; Lim, J.H.; Jung, Y.J.; Choi, H.; Lee, S.W.; Im, C.H. Development of an SSVEP-based BCI spelling system adopting a QWERTY-style LED keyboard. J. Neurosci. Methods 2012, 208, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Power, S.D.; Kushki, A.; Chau, T. Towards a system-paced near-infrared spectroscopy brain-computer interface: Differentiating prefrontal activity due to mental arithmetic and mental singing from the no-control state. J. Neural Eng. 2011, 8, 066004. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Müller, K.R.; Hwang, H.J. Near-infrared spectroscopy (NIRS)-based eyes-closed brain-computer interface (BCI) using prefrontal cortex activation due to mental arithmetic. Sci. Rep. 2016, 6, 36203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedrich, E.V.; Scherer, R.; Neuper, C. The effect of distinct mental strategies on classification performance for brain-computer interfaces. Int. J. Psychophysiol. 2012, 84, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Müller, K.-R.; Schmitz, C.H.; Kim, D.-W.; Hwang, H.-J. Evaluation of a compact hybrid brain-computer interface system. Biomed. Res. Int. 2017, 2017, 11. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.-J.; Kwon, K.; Im, C.-H. Neurofeedback-based motor imagery training for brain-computer interface (BCI). J. Neurosci. Methods 2009, 179, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Mensh, B.D.; Werfel, J.; Seung, H.S. BCI competition 2003-data set Ia: Combining gamma-band power with slow cortical potentials to improve single-trial classification of electroencephalographic signals. IEEE Trans. Biomed. Eng. 2004, 51, 1052–1056. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-J.; Lee, E.C. EEG based comparative measurement of visual fatigue caused by 2D and 3D displays. In Proceedings of the International Conference on Human-Computer Interaction, Berlin, Germany, 9–14 July 2011; pp. 289–292. [Google Scholar]
- Khan, M.J.; Hong, K.S. Passive BCI based on drowsiness detection: An fNIRS study. Biomed. Opt. Express 2015, 6, 4063–4078. [Google Scholar] [CrossRef] [PubMed]
- Myrden, A.; Chau, T. Effects of user mental state on EEG-BCI performance. Front. Hum. Neurosci. 2015, 9, 308. [Google Scholar] [CrossRef] [PubMed]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Blankertz, B.; Acqualagna, L.; Dähne, S.; Haufe, S.; Schultze-Kraft, M.; Sturm, I.; Ušćumlic, M.; Wenzel, M.A.; Curio, G.; Müller, K.-R. The Berlin Brain-Computer Interface: Progress beyond communication and control. Front. Neurosci. 2016, 10, 530. [Google Scholar] [CrossRef] [PubMed]
- McFarland, D.J.; McCane, L.M.; David, S.V.; Wolpaw, J.R. Spatial filter selection for EEG-based communication. Electroencephalogr. Clin. Neurophysiol. 1997, 103, 386–394. [Google Scholar] [CrossRef]
- Zhang, J.; Lau, E.Y.Y. Sleep deprivation compromises resting-state emotional regulatory processes: An EEG study. J. Sleep Res. 2018, 27. [Google Scholar] [CrossRef] [PubMed]
- Pfurtscheller, G. Graphical display and statistical evaluation of event-related desynchronization (ERD). Electroencephalogr. Clin. Neurophysiol. 1977, 43, 757–760. [Google Scholar] [CrossRef]
- Lemm, S.; Blankertz, B.; Curio, G.; Muller, K.R. Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans. Biomed. Eng. 2005, 52, 1541–1548. [Google Scholar] [CrossRef] [PubMed]
- Ramoser, H.; Muller-Gerking, J.; Pfurtscheller, G. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 2000, 8, 441–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peck, R.; Ness, J.V. The use of shrinkage estimators in linear discriminant analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1982, 4, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, J.; Strimmer, K. A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat. Appl. Genet. Mol. Biol. 2005, 4, 32. [Google Scholar] [CrossRef] [PubMed]
- Kidmose, P.; Looney, D.; Mandic, D.P. Auditory evoked responses from Ear-EEG recordings. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), San Diego, CA, USA, 28 August–1 September 2012; pp. 586–589. [Google Scholar]
- Fiedler, L.; Obleser, J.; Lunner, T.; Graversen, C. Ear-EEG allows extraction of neural responses in challenging listening scenarios—A future technology for hearing aids? In Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 5697–5700. [Google Scholar]
- Mirkovic, B.; Bleichner, M.G.; De Vos, M.; Debener, S. Target speaker detection with concealed EEG around the ear. Front. Neurosci. 2016, 10, 349. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.T.; Nakanishi, M.; Wang, Y.; Wei, C.S.; Cheng, C.K.; Jung, T.P. An online brain-computer interface based on SSVEPs measured from non-hair-bearing areas. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Floriano, A.; Diez, P.F.; Bastos-Filho, T.F. Evaluating the influence of chromatic and luminance stimuli on SSVEPs from behind-the-ears and occipital areas. Sensors 2018, 18, 615. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.S.; Wang, Y.T.; Lin, C.T.; Jung, T.P. Toward drowsiness detection using non-hair-bearing EEG-based brain-computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Kidmose, P.; Looney, D.; Jochumsen, L.; Mandic, D.P. Ear-EEG from generic earpieces: A feasibility study. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Osaka, Japan, 3–7 July 2013; pp. 543–546. [Google Scholar]
- Goverdovsky, V.; Looney, D.; Kidmose, P.; Mandic, D.P. In-ear EEG from viscoelastic generic earpieces: Robust and unobtrusive 24/7 monitoring. IEEE Sens. J. 2016, 16, 271–277. [Google Scholar] [CrossRef]
- Bech Christensen, C.; Harte, J.M.; Lunner, T.; Kidmose, P. Ear-EEG based objective hearing threshold estimation evaluated on normal hearing subjects. IEEE Trans. Biomed. Eng. 2017, 99, 28796603. [Google Scholar] [CrossRef] [PubMed]
- Goverdovsky, V.; von Rosenberg, W.; Nakamura, T.; Looney, D.; Sharp, D.J.; Papavassiliou, C.; Morrell, M.J.; Mandic, D.P. Hearables: Multimodal physiological in-ear sensing. Sci. Rep. 2017, 7, 6948. [Google Scholar] [CrossRef] [PubMed]
- Pacharra, M.; Debener, S.; Wascher, E. Concealed around-the-ear EEG captures cognitive processing in a visual simon task. Front. Hum. Neurosci. 2017, 11, 290. [Google Scholar] [CrossRef] [PubMed]
- Hong, B.; Lou, B.; Guo, J.; Gao, S. Adaptive active auditory brain computer interface. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 4531–4534. [Google Scholar]
- Allison, B.; Luth, T.; Valbuena, D.; Teymourian, A.; Volosyak, I.; Graser, A. BCI demographics: How many (and what kinds of) people can use an SSVEP BCI? IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Brunner, P.; Joshi, S.; Briskin, S.; Wolpaw, J.R.; Bischof, H.; Schalk, G. Does the ‘P300’ speller depend on eye gaze? J. Neural Eng. 2010, 7, 056013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, G.Y.; Choi, S.I.; Hwang, H.J. Individual identification based on resting-state EEG. In Proceedings of the 6th International Conference on Brain-Computer Interface (BCI), Seoul, Korea, 15–17 January 2018; pp. 1–4. [Google Scholar]
- Benedek, M.; Schickel, R.J.; Jauk, E.; Fink, A.; Neubauer, A.C. Alpha power increases in right parietal cortex reflects focused internal attention. Neuropsychologia 2014, 56, 393–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katahira, K.; Yamazaki, Y.; Yamaoka, C.; Ozaki, H.; Nakagawa, S.; Nagata, N. EEG correlates of the flow state: A combination of increased frontal theta and moderate frontocentral alpha rhythm in the mental arithmetic task. Front. Psychol. 2018, 9, 300. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Lu, B.L. Detecting driver sleepiness from EEG alpha wave during daytime driving. In Proceedings of the 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Kansas, MO, USA, 13–16 November 2017; pp. 728–731. [Google Scholar]
- Bauernfeind, G.; Scherer, R.; Pfurtscheller, G.; Neuper, C. Single-trial classification of antagonistic oxyhemoglobin responses during mental arithmetic. Med. Biol. Eng. Comput. 2011, 49, 979–984. [Google Scholar] [CrossRef] [PubMed]
- Harrison, A.H.; Noseworthy, M.D.; Reilly, J.P.; Guan, W.; Connolly, J.F. EEG and fMRI agree: Mental arithmetic is the easiest form of imagery to detect. Conscious Cogn. 2017, 48, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Lühmann, A.v.; Blankertz, B.; Kim, D.W.; Jeong, J.; Hwang, H.J.; Müller, K.R. Open access dataset for EEG + NIRS single-trial classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1735–1745. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; von Lühmann, A.; Kim, D.-W.; Mehnert, J.; Hwang, H.-J.; Müller, K.-R. Simultaneous acquisition of EEG and NIRS during cognitive tasks for an open access dataset. Sci. Data 2018, 5, 180003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikkelsen, K.B.; Kidmose, P.; Hansen, L.K. On the keyhole hypothesis: High mutual information between ear and scalp EEG. Front. Hum. Neurosci. 2017, 11, 341. [Google Scholar] [CrossRef] [PubMed]
- Guay, S.; De Beaumont, L.; Drisdelle, B.L.; Lina, J.-M.; Jolicoeur, P. Electrophysiological impact of multiple concussions in asymptomatic athletes: A re-analysis based on alpha activity during a visual-spatial attention task. Neuropsychologia 2018, 108, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Perelmouter, J.; Birbaumer, N. A binary spelling interface with random errors. IEEE Trans. Rehabil. Eng. 2000, 8, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Park, S.A.; Hwang, H.J.; Lim, J.H.; Choi, J.H.; Jung, H.K.; Im, C.H. Evaluation of feature extraction methods for EEG-based brain-computer interfaces in terms of robustness to slight changes in electrode locations. Med. Biol. Eng. Comput. 2013, 51, 571–579. [Google Scholar] [CrossRef] [PubMed]
- So, W.K.Y.; Wong, S.W.H.; Mak, J.N.; Chan, R.H.M. An evaluation of mental workload with frontal EEG. PLoS ONE 2017, 12, e0174949. [Google Scholar] [CrossRef] [PubMed]
- Curran, E.; Sykacek, P.; Stokes, M.; Roberts, S.J.; Penny, W.; Johnsrude, I.; Owen, A.M. Cognitive tasks for driving a brain-computer interfacing system: A pilot study. IEEE Trans. Neural Syst. Rehabil. Eng. 2004, 12, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Naito, M.; Michioka, Y.; Ozawa, K.; Ito, Y.; Kiguchi, M.; Kanazawa, T. A communication means for totally locked-in ALS patients based on changes in cerebral blood volume measured with near-infrared light. IEICE Trans. Inf. Syst. 2007, 7, 1028–1037. [Google Scholar] [CrossRef]
- Power, S.D.; Falk, T.H.; Chau, T. Classification of prefrontal activity due to mental arithmetic and music imagery using hidden Markov models and frequency domain near-infrared spectroscopy. J. Neural Eng. 2010, 7, 26002. [Google Scholar] [CrossRef] [PubMed]
- Petersen, S.E.; Fox, P.T.; Posner, M.I.; Mintun, M.; Raichle, M.E. Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 1988, 331, 585. [Google Scholar] [CrossRef] [PubMed]
- Boostani, R.; Karimzadeh, F.; Nami, M. A comparative review on sleep stage classification methods in patients and healthy individuals. Comput. Methods Programs Biomed. 2017, 140, 77–91. [Google Scholar] [CrossRef] [PubMed]
- Alimardani, F.; Cho, J.H.; Boostani, R.; Hwang, H.J. Classification of bipolar disorder and schizophrenia using steady-state visual evoked potential based features. IEEE Access 2018, 6, 40379–40388. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.-I.; Han, C.-H.; Choi, G.-Y.; Shin, J.; Song, K.S.; Im, C.-H.; Hwang, H.-J. On the Feasibility of Using an Ear-EEG to Develop an Endogenous Brain-Computer Interface. Sensors 2018, 18, 2856. https://doi.org/10.3390/s18092856
Choi S-I, Han C-H, Choi G-Y, Shin J, Song KS, Im C-H, Hwang H-J. On the Feasibility of Using an Ear-EEG to Develop an Endogenous Brain-Computer Interface. Sensors. 2018; 18(9):2856. https://doi.org/10.3390/s18092856
Chicago/Turabian StyleChoi, Soo-In, Chang-Hee Han, Ga-Young Choi, Jaeyoung Shin, Kwang Soup Song, Chang-Hwan Im, and Han-Jeong Hwang. 2018. "On the Feasibility of Using an Ear-EEG to Develop an Endogenous Brain-Computer Interface" Sensors 18, no. 9: 2856. https://doi.org/10.3390/s18092856
APA StyleChoi, S. -I., Han, C. -H., Choi, G. -Y., Shin, J., Song, K. S., Im, C. -H., & Hwang, H. -J. (2018). On the Feasibility of Using an Ear-EEG to Develop an Endogenous Brain-Computer Interface. Sensors, 18(9), 2856. https://doi.org/10.3390/s18092856