Multiparametric Monitoring in Equatorian Tomato Greenhouses (II): Energy Consumption Dynamics
<p>Acquisition and storage of the current consumption in each node.</p> "> Figure 2
<p>Time signals for DigiMesh network in two example realizations: (<b>Left</b>) at 19,200 bauds; (<b>Right</b>) at 57,600 bauds; (<b>Top</b>) complete time signals; and (<b>Bottom</b>) signal sections with closer detail.</p> "> Figure 3
<p>M-mode of <span class="html-italic">pdf</span> with distinctive characteristics for DigiMesh network. From left to right: Coordinator Node, Node 1, and Node 4. (<b>Top</b>) At 19,200 bauds; and (<b>Bottom</b>) at 57,600 bauds.</p> "> Figure 4
<p>CI of <span class="html-italic">pdf</span> with distinctive characteristics for DigiMesh network. From left to right: Coordinator Node, Node 1, and Node 4. (<b>Top</b>) At 19,200 bauds; and (<b>Bottom</b>) at 57,600 bauds.</p> "> Figure 5
<p>Histograms for DigiMesh network. From left to right: at 9600, 19,200, and 57,600 bauds.</p> "> Figure 6
<p>SAFs with different characteristics for DigiMesh network at 19,200 bauds. From left to right: Coordinator Node, Node 2, and Node 4.</p> "> Figure 7
<p>CI for SAF with distinctive characteristics for DigiMesh network: (<b>Left</b>) at 19,200 bauds; (<b>Right</b>) at 57,600 bauds; (<b>Top</b>) Coordinator Node; and (<b>Bottom</b>) Sensor Node 4.</p> "> Figure 8
<p>Time signals for ZigBee network. From left to right: at 9600, 19,200, and 57,600 bauds. (<b>Top</b>) Complete time signal; and (<b>Bottom</b>) time detail of the same signal.</p> "> Figure 9
<p>Complete time signals for ZigBee network at 9600 bauds in two example realizations: (<b>Left</b>) Realization 4; and (<b>Right</b>) Realization 7.</p> "> Figure 10
<p>Time signals for ZigBee network at different NPLC. From left to right: 0.2, 2, and 10 NPLC.</p> "> Figure 11
<p>M-mode of <span class="html-italic">pdf</span> with distinctive characteristics for Coordinator Node of the ZigBee network: (<b>Left</b>) at 9600 bauds; and (<b>Right</b>) at 57,600 bauds.</p> "> Figure 12
<p>CI of <span class="html-italic">pdf</span> for ZigBee network. From left to right: at 9600, 19,200, and 57,600 bauds. From top to bottom: Coordinator Node and Nodes 1 to 3.</p> "> Figure 12 Cont.
<p>CI of <span class="html-italic">pdf</span> for ZigBee network. From left to right: at 9600, 19,200, and 57,600 bauds. From top to bottom: Coordinator Node and Nodes 1 to 3.</p> "> Figure 13
<p>Histograms for ZigBee network. From left to right: at 9600, 19,200, and 57,600 bauds.</p> "> Figure 14
<p>Representative SAFs for the ZigBee network. From left to right: 9600, 19,200, and 57,600 bauds. (<b>a</b>–<b>c</b>) Realizations 5, 1, and 8; and (<b>d</b>–<b>f</b>) M-modes of Sensor Node 1 at each speed.</p> "> Figure 14 Cont.
<p>Representative SAFs for the ZigBee network. From left to right: 9600, 19,200, and 57,600 bauds. (<b>a</b>–<b>c</b>) Realizations 5, 1, and 8; and (<b>d</b>–<b>f</b>) M-modes of Sensor Node 1 at each speed.</p> "> Figure 15
<p>CI of SAF for ZigBee network. From left to right: 9600, 19,200, and 57,600 bauds. From top to bottom: Coordinator Nodes, and Nodes 1–3.</p> "> Figure 16
<p>Time signals for WiFi network: (<b>Left</b>) at 9600 bauds; and (<b>Right</b>) at 57,600 bauds. From top to bottom: total time signal, time detail of the signal, and signal sections with closer detail.</p> "> Figure 17
<p>M-mode plots of the <span class="html-italic">pdf</span> with particular characteristics: (<b>a</b>) DigiMesh Coordinator Node at 57,600 bauds; and (<b>b</b>) WiFi Coordinator Node at 57,600 bauds.</p> "> Figure 18
<p>Histograms for WiFi network: (<b>Left</b>) at 9600 bauds; and (<b>Right</b>) at 57,600 bauds.</p> "> Figure 19
<p>CIs of <span class="html-italic">pdf</span> for WiFi network: (<b>Left</b>) 9600 bauds; and (<b>Right</b>) 57,600 bauds. From top to bottom: Coordinator Node and Nodes 1–4.</p> "> Figure 19 Cont.
<p>CIs of <span class="html-italic">pdf</span> for WiFi network: (<b>Left</b>) 9600 bauds; and (<b>Right</b>) 57,600 bauds. From top to bottom: Coordinator Node and Nodes 1–4.</p> "> Figure 20
<p>Representative SAF for WiFi network: (<b>Left</b>) 9600 bauds; (<b>Right</b>) 57,600 bauds; (<b>Top</b>) time series for Realizations 6 and 7; and (<b>Bottom</b>) M-mode of Sensor Node 4.</p> "> Figure 21
<p>CI of SAF for WiFi network: (<b>Left</b>) 9600 bauds; and (<b>Right</b>) 57,600 bauds. From top to bottom: Coordinator, and Nodes 1–4.</p> "> Figure A1
<p>Detailed time signals for DigiMesh network at 9600 bauds in two example realizations: (<b>Left</b>) Realization 4; and (<b>Right</b>) Realization 5.</p> "> Figure A2
<p>Closer details signal sections for DigiMesh network, and spike sequence of two realizations at 9600 bauds: (<b>Left</b>) Realization 9 with <span class="html-italic">T</span> = 0.68 s; and (<b>Right</b>) Realization 10 with <span class="html-italic">T</span> = 1.57 s.</p> "> Figure A3
<p>Histograms of the consumption signals for DigiMesh network at 9600 bauds: (<b>Left</b>) linear scale; and (<b>Right</b>) logarithmic scale.</p> "> Figure A4
<p>Plots of <span class="html-italic">pdf</span> for DigiMesh network at 9600 bauds: (<b>Left</b>) M-mode; and (<b>Right</b>) histograms of each realization (discontinuous), and bootstrap CI (gray shading). From top to bottom: Coordinator Node and Nodes 1–4.</p> "> Figure A4 Cont.
<p>Plots of <span class="html-italic">pdf</span> for DigiMesh network at 9600 bauds: (<b>Left</b>) M-mode; and (<b>Right</b>) histograms of each realization (discontinuous), and bootstrap CI (gray shading). From top to bottom: Coordinator Node and Nodes 1–4.</p> "> Figure A5
<p>Time signals of SAF for DigiMesh network at 9600 bauds. From left to right: Realizations 1, 4, and 7.</p> "> Figure A6
<p>Plots of SAF for DigiMesh network at 9600 bauds: (<b>Left</b>) M-mode; and (<b>Right</b>) autocorrelograms of each realization, and the bootstrap CI. From top to bottom: Coordinator and Nodes 1–4.</p> "> Figure A6 Cont.
<p>Plots of SAF for DigiMesh network at 9600 bauds: (<b>Left</b>) M-mode; and (<b>Right</b>) autocorrelograms of each realization, and the bootstrap CI. From top to bottom: Coordinator and Nodes 1–4.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Statistical Analysis of the Consumption Dynamics
4. Experiments and Results
4.1. Setup of Energy Consumption Measurements
4.2. Energy Consumption Dynamics of DigiMesh Network
4.3. Energy Consumption Dynamics of ZigBee Networks
4.4. Energy Consumption Dynamics of WiFi Network
5. Discussion and Conclusions
- The usual patterns and duration times of each transmission were determined by locating the periodic spikes in the time series of the electrical current measurements.
- A detailed statistical description of the consumption dynamics and ergodic properties using histograms, the estimated pdf, and their CIs was elucidated.
- The nodes where consumption prediction is feasible by means of seasonality study (estimated SAF and CIs), as well as the differentiation of the nodes affected by the type of topology or speed change, were identified. To consider additional aspects such as the full charge of the battery during the experimental phase, a particular case of this study was given by the sensor nodes that measure CO, as well as the Coordinating Nodes of the ZigBee and DigiMesh networks.
- Recommendation of the most suitable network in terms of energy saving for use in greenhouse monitoring systems are given.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Statistical Plot | Applicability |
---|---|
Time series | To determine trends, average, and variability of the energy consumption for each experiment run. |
To identify the approximate transmission patterns (in terms of consumption peaks repeated after some time intervals). | |
To determine the duration time of each transmission (T). | |
Histograms and pdf | To represent the relative frequency distribution of consumption in the network nodes. |
To identify scattered data from the central distribution (tails with errors or noise). | |
To identify multimodalities. | |
Estimated SAF | To determine persistence and stationarity profiles of the energy consumption processess. |
CIs | To provide with confidence limits on histograms and SAFs. |
M-mode | Simultaneous representation of the time processes, pdf and SAFs for each experiment. |
To better identify similarities and differences of the results accross runs. |
References
- INEC. Survey Area and Agricultural Production Continues (ESPAC); Technical Report; National Institute of Statistics and Census (INEC): Quito, Ecuador, 2015. [Google Scholar]
- Andrae, A.S.; Edler, T. On global electricity usage of communication technology: Trends to 2030. Challenges 2015, 6, 117–157. [Google Scholar] [CrossRef]
- Pantazis, N.A.; Nikolidakis, S.A.; Vergados, D.D. Energy-efficient routing protocols in wireless sensor networks: A survey. IEEE Commun. Surv. Tutor. 2013, 15, 551–591. [Google Scholar] [CrossRef]
- Mora-Rodríguez, C.E.; Ferro-Escobar, R.; Martínez, C.A. Técnicas de Optimización de Consumo Energético en Redes de Sensores Inalámbricos y Modelado Energético Básico de Nodos Sensores. Ingenio Magno 2015, 5, 41–51. (In Spanish) [Google Scholar]
- Lange, C.; Kosiankowski, D.; Weidmann, R.; Gladisch, A. Energy Consumption of Telecommunication Networks and Related Improvement Options. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 285–295. [Google Scholar] [CrossRef]
- Tucker, R.S. Energy consumption in telecommunications. In Proceedings of the Optical Interconnects Conference, Santa Fe, NM, USA, 20–23 May 2012; pp. 1–2. [Google Scholar]
- Vaquerizo-Hdez, D.; Muñoz, P. A Low Power Consumption Algorithm for Efficient Energy Consumption in ZigBee Motes. Sensors 2017, 17, 2179. [Google Scholar] [CrossRef] [PubMed]
- Lajara, R.; Pelegrí-Sebastiá, J.; Solano, J.J.P. Power consumption analysis of operating systems for wireless sensor networks. Sensors 2010, 10, 5809–5826. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Orlik, P.V.; Sahinoglu, Z.; Molisch, A.F.; Kinney, P. UWB systems for wireless sensor networks. Proc. IEEE 2009, 97, 313–331. [Google Scholar] [CrossRef]
- Dias, N.S.; Carmo, J.P.; Mendes, P.M.; Correia, J.H. A Low-Power/Low-Voltage CMOS Wireless Interface at 5.7 GHz With Dry Electrodes for Cognitive Networks. IEEE Sens. J. 2011, 11, 755–762. [Google Scholar] [CrossRef] [Green Version]
- Anastasi, G.; Conti, M.; Di Francesco, M.; Passarella, A. Energy conservation in wireless sensor networks: A survey. Ad Hoc Netw. 2009, 7, 537–568. [Google Scholar] [CrossRef] [Green Version]
- Seah, W.K.; Eu, Z.A.; Tan, H.P. Wireless sensor networks powered by ambient energy harvesting (WSN-HEAP)-Survey and challenges. In Proceedings of the 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology, Aalborg, Denmark, 17–20 May 2009; pp. 1–5. [Google Scholar]
- Abdel-Aal, M.O.; Shaaban, A.A.; Ramadan, R.A.; Abdel-Meguid, M.Z. Energy saving and reliable data reduction techniques for single and multi-modal WSNs. In Proceedings of the International Conference on Engineering and Technology (ICET), Cairo, Egypt, 10–11 October 2012; pp. 1–8. [Google Scholar]
- Erazo-Rodas, M.; Sandoval-Moreno, M.; Muñoz-Romero, S.; Rivas, D.; Huerta, M.; Naranjo-Hidalgo, C.; Rojo-Álvarez, J.L. Multiparametric Monitoring in Equatorian Tomato Greenhouse (I): Wireless Sensor Network Benchmarking. Sensors 2018, 18, 2555. [Google Scholar]
- Erazo-Rodas, M.; Sandoval-Moreno, M.; Muñoz-Romero, S.; Rivas, D.; Huerta, M.; Rojo-Álvarez, J.L. Multiparametric Monitoring in Equatorian Tomato Greenhouse (III): Environment Measurement Dynamics. Sensors 2018, 18, 2557. [Google Scholar]
- Chaudhary, D.; Nayse, S.; Waghmare, L. Application of wireless sensor networks for greenhouse parameter control in precision agriculture. Int. J. Wirel. Mob. Netw. 2011, 3, 140–149. [Google Scholar] [CrossRef]
- Li, J.; Shen, C. An energy conservative wireless sensor networks approach for precision agriculture. Electronics 2013, 2, 387–399. [Google Scholar] [CrossRef]
- Pellegrini, M. Intelligent wireless sensor nodes in water monitoring systems. In Proceedings of the IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems Proceedings, Naples, Italy, 17–18 September 2014; pp. 1–6. [Google Scholar]
- Olatinwo, S.O.; Joubert, T.H. Optimizing the Energy and Throughput of a Water-Quality Monitoring System. Sensors 2018, 18, 1198. [Google Scholar] [CrossRef] [PubMed]
- Đurišić, M.P.; Tafa, Z.; Dimić, G.; Milutinović, V. A survey of military applications of wireless sensor networks. In Proceedings of the Mediterranean Conference on Embedded Computing (MECO), Bar, Montenegro, 19–21 June 2012; pp. 196–199. [Google Scholar]
- Mendalka, M.; Gadaj, M.; Kulas, L.; Nyka, K. WSN for intelligent street lighting system. In Proceedings of the 2nd International Conference on Information Technology, (2010 ICIT), Gdansk, Poland, 28–30 June 2010; pp. 99–100. [Google Scholar]
- Yi, W.Y.; Lo, K.M.; Mak, T.; Leung, K.S.; Leung, Y.; Meng, M.L. A survey of wireless sensor network based air pollution monitoring systems. Sensors 2015, 15, 31392–31427. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Lozano, J.; Martín-Guzmán, M.; Martín-Ávila, J.; García-Cerezo, A. A wireless sensor network for urban traffic characterization and trend monitoring. Sensors 2015, 15, 26143–26169. [Google Scholar] [CrossRef] [PubMed]
- Reza Akhondi, M.; Talevski, A.; Carlsen, S.; Petersen, S. Applications of wireless sensor networks in the oil, gas and resources industries. In Proceedings of the 24th IEEE International Conference on Advanced Information Networking and Applications (AINA), Perth, WA, Australia, 20–23 April 2010; pp. 941–948. [Google Scholar]
- Magaña-Espinoza, P.; Aquino-Santos, R.; Cárdenas-Benítez, N.; Aguilar-Velasco, J.; Buenrostro-Segura, C.; Edwards-Block, A.; Medina-Cass, A. Wisph: A wireless sensor network-based home care monitoring system. Sensors 2014, 14, 7096–7119. [Google Scholar] [CrossRef] [PubMed]
- El Emary, I.; Ramakrishnan, S. Wireless Sensor Networks; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Anisi, M.H.; Abdul-Salaam, G.; Abdullah, A.H. A survey of wireless sensor network approaches and their energy consumption for monitoring farm fields in precision agriculture. Precis. Agric. 2015, 16, 216–238. [Google Scholar] [CrossRef]
- Girban, G.; Popa, M. A glance on WSN lifetime and relevant factors for energy consumption. In Proceedings of the International Joint Conference on Computational Cybernetics and Technical Informatics, Timisoara, Romania, 27–29 May 2010; pp. 523–528. [Google Scholar]
- Pirnia, S. Energy Consumption in Wireless Sensor Networks. Master’s Thesis, University of Pittsburgh, Pittsburgh, PA, USA, 2010. [Google Scholar]
- Barboni, L.; Valle, M. Experimental analysis of wireless sensor nodes current consumption. In Proceedings of the Second International Conference on Sensor Technologies and Applications, SENSORCOMM’08, Cap Esterel, France, 25–31 August 2008; pp. 401–406. [Google Scholar]
- Niewiadomska-Szynkiewicz, E.; Kwaśniewski, P.; Windyga, I. Comparative study of wireless sensor networks energy-efficient topologies and power save protocols. J. Telecommun.inf. Technol. 2009, 68–75. [Google Scholar]
- Al-Rousan, M.; Landolsi, T.; Kanakri, W.M. Energy consumption considerations in dynamic wireless sensor networks with nodes and base stations mobility. Int. J. Sens. Netw. 2010, 7, 217–227. [Google Scholar] [CrossRef]
- Casilari, E.; Cano-García, J.M.; Campos-Garrido, G. Modeling of current consumption in 802.15. 4/ZigBee sensor motes. Sensors 2010, 10, 5443–5468. [Google Scholar] [CrossRef] [PubMed]
- Ishmanov, F.; Malik, A.S.; Kim, S.W. Energy consumption balancing (ECB) issues and mechanisms in wireless sensor networks (WSNs): A comprehensive overview. Eur. Trans. Telecommun. 2011, 22, 151–167. [Google Scholar] [CrossRef]
- Lozneanu, D.; Pana, G.; Miron, E.L. Energy model of sensor nodes in WSN. Rev. Air Force Acad. 2011, 9, 33. [Google Scholar]
- Mihajlov, B.; Bogdanoski, M. Overview and analysis of the performances of ZigBee-based wireless sensor networks. Int. J. Comput. Appl. 2011, 29, 28–35. [Google Scholar]
- Soua, R.; Minet, P. A survey on energy efficient techniques in wireless sensor networks. In Proceedings of the 2011 4th Joint IFIPWireless and Mobile Networking Conference (WMNC), Toulouse, France, 26–28 October 2011; pp. 1–9. [Google Scholar]
- Kaur, G.; Garg, R.M. Energy efficient topologies for wireless sensor networks. Int. J. Distrib. Parallel Syst. 2012, 3, 179. [Google Scholar] [CrossRef]
- Silva, I.; Guedes, L.A.; Portugal, P.; Vasques, F. Reliability and availability evaluation of wireless sensor networks for industrial applications. Sensors 2012, 12, 806–838. [Google Scholar] [CrossRef] [PubMed]
- Distefano, S. Evaluating reliability of WSN with sleep/wake-up interfering nodes. Int. J. Syst. Sci. 2013, 44, 1793–1806. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, A.; Montiel, C.; McLauchlan, L. Wireless Sensor Networks–A Comparative Study for Energy Minimization Using Topology Control. In Proceedings of the Sixth Annual IEEE Green Technologies Conference, Corpus Christi, TX, USA, 3–4 April 2014; pp. 44–48. [Google Scholar]
- Luo, F.; Jiang, C.; Zhang, H.; Wang, X.; Zhang, L.; Ren, Y. Node energy consumption analysis in wireless sensor networks. In Proceedings of the 2014 IEEE 80th Vehicular Technology Conference (VTC Fall), Vancouver, BC, Canada, 14–17 September 2014; pp. 1–5. [Google Scholar]
- Moschitta, A.; Neri, I. Power consumption assessment in wireless sensor networks. In ICT-Energy-Concepts towards Zero-Power Information and Communication Technology; InTech: London, UK, 2014. [Google Scholar]
- Rault, T.; Bouabdallah, A.; Challal, Y. Energy efficiency in wireless sensor networks: A top-down survey. Comput. Netw. 2014, 67, 104–122. [Google Scholar] [CrossRef] [Green Version]
- Abo-Zahhad, M.; Farrag, M.; Ali, A. Modeling and optimization of energy consumption in Wireless Sensor Networks. In Proceedings of the 2015 Tenth International Conference on Computer Engineering & Systems (ICCES), Cairo, Egypt, 23–24 December 2015; pp. 295–300. [Google Scholar]
- Aguirre, E.; Lopez-Iturri, P.; Azpilicueta, L.; Astrain, J.J.; Villadangos, J.; Falcone, F. Analysis of wireless sensor network topology and estimation of optimal network deployment by deterministic radio channel characterization. Sensors 2015, 15, 3766–3788. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Lu, Y.; Han, J.; Shi, L. Transmission reliability evaluation for wireless sensor networks. Int. J. Distrib. Sens. Netw. 2016, 12, 1346079. [Google Scholar] [CrossRef]
- Dâmaso, A.; Rosa, N.; Maciel, P. Integrated evaluation of reliability and power consumption of wireless sensor networks. Sensors 2017, 17, 2547. [Google Scholar] [CrossRef] [PubMed]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Ortiz-Puente, R.; Sanromán-Junquera, M.; Muñoz-Romero, S.; Ortiz, M.; Barbero-Puchades, M.; Goya-Esteban, R.; Rojo-Álvarez, J.L.; Almendral-Garrote, J. Effect of Different Ventricular Arrhythmia Origin on Cardiac Sounds Variability Using M-mode Signals Representation. Computing 2017, 44, 1. [Google Scholar]
- Rivas-Lalaleo, D.; Muñoz-Romero, S.; Huerta, M.; Erazo-Rodas, M.; Sánchez-Muñoz, J.; Rojo-Álvarez, J.; García-Alberola, A. Force Trends and Pulsatility for Catheter Contact Identification in Intracardiac Electrograms during Arrhythmia Ablation. Sensors 2018, 18, 1399. [Google Scholar] [CrossRef] [PubMed]
- Dixon, W.J.; Massey Frank, J. Introduction to Statistical Analysis, 4th ed.; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1950. [Google Scholar]
- Dong, Q.; Elliott, M.R.; Raghunathan, T.E. A nonparametric method to generate synthetic populations to adjust for complex sampling design features. Surv. Methodol. 2014, 40, 29–46. [Google Scholar] [PubMed]
- Duchon, C.; Hale, R. Time Series Analysis in Meteorology and Climatology: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2012; Volume 7. [Google Scholar]
- Vaseghi, S.V. Advanced Digital Signal Processing and Noise Reduction, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- User Guide (Agilent 34410A); Technical Report; Agilent Technologies: Santa Clara, CA, USA, 2000.
- Papoulis, A.; Pillai, S.U. Probability, Random Variables, and Stochastic Processes, 4th ed.; Tata McGraw-Hill Education: New York, NY, USA, 2002. [Google Scholar]
- Laxpati, S.R.; Goncharoff, V. Practical Signal Processing and Its Applications: With Solved Homework Problems; World Scientific: Singapore, 2017. [Google Scholar]
- Arfken, G.B.; Weber, H.J. Mathematical Methods for Physicists International Student Edition, 6th ed.; Academic Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Hogg, R.V.; Craig, A.T. Introduction to Mathematical Statistics, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1995. [Google Scholar]
Work | Technical Contribution |
---|---|
Barboni et al. (2008) [30] | An electronic system to visualize node current consumption usage, and charge extracted from the battery during node operating states. |
Niewiadomska et al. (2009) [31] | A short overview of the energy conservation techniques and algorithms for calculating energy-efficient topologies for WSNs. |
Al et al. (2010) [32] | A technique for WSN with mobile sensor nodes reducting 50% in the energy consumption. |
Casilari et al. (2010) [33] | A full experimental characterization of current consumption in ZigBee sensor nodes. |
Ishmanov et al. (2011) [34] | A review of energy consumption balancing (ECB) issues in WSNs. |
Lozneanu et al. (2011) [35] | Energy mathematica model for each part of the wireless sensor node, which is adaptable to any sensor node. |
Mihajlov et al. (2011) [36] | A performance evaluation of a WSN. |
Soua et al. (2011) [37] | A review of different techniques to reduce the consumption of the sensor nodes. |
Kaur et al. (2012) [38] | An overview of WSNs and a scenario based comparison for energy efficiency between different topologies. |
Silva et al. (2012) [39] | A methodology to evaluate the dependability of WSNs in typical industrial environments. |
Distefano (2013) [40] | An evaluation of the reliability of WSN applied from a system reliability point of view. |
Deshpande et al. (2014) [41] | A study of the topology control to minimize energy consumption for a WSN. |
Luo et al. (2014) [42] | Analysis of the distributions of the energy consumption for the communications among nodes. |
Moschitta et al. (2014) [43] | A review on energy consumption measurements in WSN networks, highlighting the node architecture and the network operation. |
Rault et al. (2014) [44] | A new taxonomy of energy conservation schemes and an analysis of how these techniques can affect the performance of their applications. |
Abo et al. (2015) [45] | An energy consumption model for a WSN node based on physical and MAC layer parameters. |
Aguirre et al. (2015) [46] | A radio planning analysis for WSN deployment is proposed by employing a deterministic 3D ray. |
Zhu et al. (2016) [47] | A reliability evaluation model for network transmission. |
Dâmaso et al. (2017) [48] | An integrated analysis of power consumption and reliability. |
Network | Nodes | NPLC | Noise RMS (PPM) | Baud Rate | Waspmote Card | Communication Module |
---|---|---|---|---|---|---|
ZigBee | 1 Coordinator 3 Sensor Nodes | 0.006 | 6 | 9600 19,200 57,600 | Software: ID PRO Libelium™ Hardware: Not required | Software: X-CTU Hardware: ZigBee Gateway |
DigiMesh | 1 Coordinator 4 Sensor Nodes | 2 | 0.2 | 9600 19,200 57,600 | Software: ID PRO Libelium™ Hardware: Not required | Software: X-CTU Hardware: ZigBee Gateway |
WiFi | 1 Coordinator 4 Sensor Node | 1 | 0.3 | 9600 57,600 | Software: ID PRO Libelium™ Hardware: Not required | Software: FTDI drivers Microchip™ Hardware: RN-XV-EK1 Module |
Baud Rate | Network Element | Parameters | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9600 | Coordinator | (uA) | 20.48 | 19.19 | 14.65 | 14.32 | 13.18 | 12.01 | 11.17 | 10.34 | 9.63 | 7.90 | 13.29 |
(uA) | 1.05 | 0.94 | 1.83 | 0.74 | 0.68 | 1.15 | 0.97 | 1.05 | 1.09 | 1.00 | 1.05 | ||
Node 1 | (uA) | 112.11 | 112.34 | 112.54 | 113.03 | 113.14 | 113.44 | 113.58 | 113.99 | 114.29 | 114.14 | 113.26 | |
(uA) | 0.43 | 0.50 | 0.41 | 0.45 | 0.53 | 0.64 | 0.59 | 0.43 | 0.42 | 0.46 | 0.49 | ||
Node 2 | (uA) | 80.28 | 80.13 | 80.16 | 80.24 | 80.18 | 80.53 | 80.37 | 80.44 | 80.44 | 80.38 | 80.32 | |
(uA) | 0.57 | 0.43 | 0.48 | 0.46 | 0.58 | 0.78 | 1.00 | 0.96 | 0.98 | 0.95 | 0.72 | ||
Node 3 | (uA) | 77.01 | 77.17 | 77.23 | 77.25 | 77.2 | 77.18 | 77.37 | 77.37 | 77.3 | 77.26 | 77.23 | |
(uA) | 0.71 | 0.60 | 0.71 | 0.78 | 0.63 | 0.70 | 0.59 | 0.59 | 0.71 | 0.58 | 0.66 | ||
Node 4 | (uA) | 156.77 | 157.31 | 157.94 | 159.18 | 159.66 | 161.78 | 161.56 | 161.41 | 161.62 | 161.96 | 159.92 | |
(uA) | 0.39 | 0.43 | 0.41 | 0.44 | 0.43 | 0.87 | 0.58 | 0.39 | 0.40 | 0.38 | 0.47 | ||
Transmission Duration | T (s) | 0.71 | 0.68 | 0.68 | 0.68 | 0.68 | 0.70 | 0.68 | 0.68 | 0.67 | 0.67 | 0.68 | |
19,200 | Coordinator | (uA) | 10.78 | 9.55 | 8.61 | 7.61 | 7.40 | 7.57 | 6.02 | 5.42 | 4.87 | 4.40 | 7.22 |
(uA) | 1.30 | 1.33 | 1.31 | 1.35 | 1.49 | 1.07 | 0.69 | 0.71 | 0.67 | 0.74 | 1.07 | ||
Node 1 | (uA) | 111.19 | 111.33 | 111.53 | 111.9 | 112.02 | 112.61 | 112.01 | 112.27 | 112.52 | 112.76 | 112.01 | |
(uA) | 0.39 | 0.50 | 0.41 | 0.43 | 0.39 | 0.52 | 0.43 | 0.41 | 0.44 | 0.37 | 0.43 | ||
Node 2 | (uA) | 79.98 | 79.98 | 79.97 | 80.04 | 80.04 | 80.03 | 80.2 | 80.03 | 80.08 | 80.13 | 80.05 | |
(uA) | 0.52 | 0.46 | 0.46 | 0.50 | 0.46 | 0.49 | 0.59 | 0.71 | 0.64 | 0.59 | 0.54 | ||
Node 3 | ć (uA) | 77.35 | 77.39 | 77.37 | 77.43 | 77.36 | 77.38 | 77.37 | 77.39 | 77.45 | 77.5 | 77.40 | |
(uA) | 0.83 | 0.96 | 0.81 | 0.83 | 0.65 | 0.85 | 0.62 | 0.55 | 0.63 | 0.64 | 0.74 | ||
Node 4 | (uA) | 161.51 | 161.47 | 161.57 | 164.57 | 165.25 | 164.59 | 163.50 | 164.05 | 164.46 | 164.86 | 163.58 | |
(uA) | 0.32 | 0.39 | 0.42 | 0.38 | 1.69 | 0.43 | 0.36 | 0.46 | 0.42 | 0.41 | 0.53 | ||
Transmission Duration | T (s) | 0.68 | 0.68 | 0.68 | 0.67 | 0.67 | 0.67 | 0.68 | 0.68 | 0.68 | 0.68 | 0.68 | |
57,600 | Coordinator | (uA) | 4.03 | 9.55 | 8.32 | 5.63 | 4.74 | 4.28 | 3.87 | 4.47 | 4.02 | 3.26 | 5.22 |
(uA) | 0.69 | 1.19 | 1.12 | 1.00 | 1.03 | 1.00 | 1.02 | 1.39 | 1.69 | 1.42 | 1.16 | ||
Node 1 | (uA) | 112.72 | 112.99 | 113.33 | 113.71 | 114.94 | 115.15 | 115.33 | 115.47 | 110.00 | 110.21 | 113.39 | |
(uA) | 0.44 | 0.49 | 0.46 | 0.40 | 0.45 | 0.42 | 0.48 | 0.46 | 0.47 | 0.41 | 0.45 | ||
Node 2 | (uA) | 80.08 | 80.22 | 80.28 | 80.29 | 80.35 | 80.36 | 80.33 | 80.31 | 80.60 | 80.45 | 80.33 | |
(uA) | 0.44 | 0.68 | 0.66 | 0.51 | 0.50 | 0.38 | 0.58 | 0.45 | 0.65 | 0.70 | 0.56 | ||
Node 3 | (uA) | 77.51 | 77.21 | 77.42 | 77.59 | 77.66 | 77.65 | 77.64 | 77.59 | 76.84 | 76.98 | 77.41 | |
(uA) | 0.76 | 0.61 | 0.65 | 0.62 | 0.58 | 0.55 | 0.57 | 0.54 | 0.79 | 0.62 | 0.63 | ||
Node 4 | (uA) | 164.97 | 159.83 | 159.97 | 161.03 | 164.01 | 164.21 | 163.64 | 163.66 | 159.77 | 160.43 | 162.15 | |
(uA) | 0.43 | 0.41 | 0.47 | 0.57 | 2.18 | 2.12 | 2.73 | 0.59 | 0.55 | 0.43 | 1.05 | ||
Transmission Duration | T (s) | 0.68 | 0.70 | 0.68 | 0.67 | 0.66 | 0.66 | 0.66 | 0.68 | 0.69 | 0.68 | 0.68 |
Baud Rate | Network Element | Parameters | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9600 | Coordinator | (uA) | 30.46 | 30.11 | 28.88 | 28.29 | 27.8 | 27.26 | 26.64 | 26.2 | 25.72 | 25.22 | 27.66 |
(uA) | 23.72 | 23.89 | 22.91 | 22.44 | 23.06 | 22.63 | 22.42 | 22.25 | 22.53 | 22.22 | 22.81 | ||
Node 1 | (uA) | 36.36 | 36.29 | 36.31 | 36.11 | 36.03 | 35.95 | 35.94 | 35.85 | 35.93 | 35.85 | 36.06 | |
(uA) | 18.77 | 18.54 | 18.71 | 18.63 | 18.38 | 18.72 | 18.59 | 18.3 | 18.54 | 18.51 | 18.57 | ||
Node 2 | (uA) | 34.8 | 34.84 | 34.97 | 34.88 | 34.82 | 34.71 | 34.76 | 34.7 | 34.71 | 34.66 | 34.79 | |
(uA) | 20.85 | 20.7 | 20.76 | 20.59 | 20.58 | 20.56 | 20.55 | 20.5 | 20.38 | 20.5 | 20.60 | ||
Node 3 | (uA) | 34.01 | 34.08 | 34.31 | 34.32 | 34.31 | 34.08 | 34.11 | 33.98 | 34.03 | 34 | 34.12 | |
(uA) | 21.07 | 21.17 | 21.35 | 21.35 | 21.15 | 21.3 | 20.95 | 20.95 | 21.02 | 21.09 | 21.14 | ||
Transmission Duration | T (sg) | 0.43 | 0.26 | 0.34 | 0.42 | 0.29 | 0.42 | 0.29 | 0.24 | 0.32 | 0.32 | 0.33 | |
19,200 | Coordinator | (uA) | 56.36 | 54.83 | 53.59 | 52.54 | 51.5 | 50.43 | 49.44 | 48.31 | 47.3 | 46.36 | 51.07 |
(uA) | 24.55 | 23.12 | 22.62 | 22.58 | 22.97 | 22.56 | 22.44 | 22.32 | 22.92 | 23.01 | 22.91 | ||
Node 1 | (uA) | 40.56 | 40.6 | 40.28 | 40.45 | 40.66 | 40.61 | 40.58 | 40.61 | 40.58 | 40.66 | 40.56 | |
(uA) | 13.1 | 13.15 | 12.89 | 12.89 | 12.79 | 12.88 | 12.71 | 12.78 | 12.61 | 12.87 | 12.87 | ||
Node 2 | (uA) | 41.75 | 41.76 | 41.63 | 41.94 | 41.94 | 41.88 | 41.93 | 41.92 | 41.9 | 41.86 | 41.85 | |
(uA) | 13.62 | 13.89 | 15.47 | 15.65 | 14.86 | 14.92 | 14.86 | 14.86 | 14.83 | 14.75 | 14.77 | ||
Node 3 | (uA) | 40.76 | 40.7 | 40.51 | 40.87 | 41.28 | 41.13 | 40.98 | 40.98 | 41.1 | 40.99 | 40.93 | |
(uA) | 14.46 | 14.26 | 14.67 | 14.45 | 14.49 | 14.44 | 14.43 | 14.22 | 14.42 | 14.43 | 14.43 | ||
57,600 | Coordinator | (uA) | 44.63 | 37.42 | 36.57 | 35.53 | 34.26 | 33.28 | 32.17 | 30.97 | 24.75 | 24.28 | 33.39 |
(uA) | 37.98 | 34.72 | 34.1 | 35.54 | 33.94 | 33.92 | 33.64 | 33.02 | 30.87 | 31.14 | 33.89 | ||
Node 1 | (uA) | 41.21 | 41.38 | 41.39 | 41.4 | 41.35 | 41.3 | 41.29 | 41.28 | 41.13 | 41.16 | 41.29 | |
(uA) | 11.67 | 12.62 | 12.83 | 12.76 | 12.78 | 12.9 | 12.88 | 12.93 | 12.51 | 12.56 | 12.64 | ||
Node 2 | (uA) | 41.57 | 41.72 | 41.85 | 41.84 | 41.37 | 41.27 | 41.24 | 41.27 | 41.86 | 41.85 | 41.58 | |
(uA) | 13.71 | 13.31 | 13.93 | 13.01 | 13.44 | 13.96 | 13.58 | 13.4 | 13.65 | 13.63 | 13.56 | ||
Node 3 | (uA) | 40.62 | 40.88 | 41.03 | 41.14 | 41.15 | 41.15 | 41.12 | 41.43 | 41.45 | 41.52 | 41.15 | |
(uA) | 14.59 | 13.66 | 14.01 | 14.04 | 13.93 | 13.91 | 13.53 | 14.04 | 13.98 | 13.94 | 13.96 |
Baud Rate | Network Element | Parameters | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9600 | Coordinator | (uA) | 277.99 | 278.06 | 278.43 | 278.74 | 279.25 | 278.63 | 278.73 | 278.83 | 278.65 | 278.49 | 278.58 |
(uA) | 7.47 | 11.87 | 10.32 | 10.82 | 11.29 | 10.53 | 10.29 | 10.52 | 10.6 | 10.23 | 10.39 | ||
Node 1 | (uA) | 45.03 | 43.39 | 44.82 | 45.86 | 46.15 | 45.57 | 46.55 | 45.24 | 44.28 | 42.46 | 44.94 | |
(uA) | 10.34 | 10.28 | 10.71 | 10.87 | 11.18 | 10.74 | 10.89 | 10.87 | 11.05 | 10.2 | 10.71 | ||
Node 2 | (uA) | 55.25 | 54.29 | 54.47 | 54.38 | 54.27 | 54.03 | 54.13 | 53.89 | 53.8 | 53.79 | 54.23 | |
(uA) | 15.48 | 15.24 | 14.74 | 15.09 | 14.93 | 14.62 | 14.73 | 14.51 | 14.66 | 14.7 | 14.87 | ||
Node 3 | (uA) | 53.35 | 276.18 | 53.43 | 53.78 | 53.58 | 53.44 | 53.46 | 53.3 | 53.35 | 53.48 | 75.74 | |
(uA) | 15.28 | 10.42 | 15.04 | 14.97 | 14.9 | 15.13 | 15.13 | 15.43 | 15.37 | 15.16 | 14.68 | ||
Node 4 | (uA) | 123.63 | 120.98 | 120.68 | 121.43 | 121.43 | 121.8 | 123.38 | 123 | 123.08 | 123.3 | 122.27 | |
(uA) | 22.73 | 20.73 | 20.12 | 20.78 | 20.78 | 21.03 | 21.83 | 22.66 | 22.44 | 22.71 | 21.58 | ||
Transmission Duration | T (sg) | 1.29 | 1.28 | 1.28 | 1.28 | 1.27 | 1.30 | 1.30 | 1.27 | 1.28 | 1.29 | 1.28 | |
57,600 | Coordinator | (uA) | 279.01 | 278.06 | 278.43 | 278.74 | 279.25 | 278.63 | 278.73 | 278.63 | 278.66 | 278.49 | 278.66 |
(uA) | 13.02 | 11.87 | 10.32 | 10.82 | 11.29 | 10.53 | 10.29 | 10.52 | 10.6 | 10.23 | 10.95 | ||
Node 1 | (uA) | 41.99 | 42 | 42.41 | 42.18 | 41.5 | 41.28 | 41.52 | 42.07 | 42.15 | 42.46 | 41.96 | |
(uA) | 10.22 | 10.22 | 10.42 | 10.37 | 9.74 | 9.71 | 9.93 | 10.12 | 10.22 | 10.2 | 10.12 | ||
Node 2 | (uA) | 54.72 | 54.13 | 54.18 | 54.25 | 53.77 | 53.78 | 53.98 | 53.62 | 53.79 | 54.12 | 54.03 | |
(uA) | 15.3 | 15.64 | 15.38 | 15.44 | 15.38 | 15.52 | 15.5 | 15.33 | 15.52 | 15.37 | 15.44 | ||
Node 3 | (uA) | 53.48 | 53.78 | 53.44 | 53.34 | 53.42 | 53.35 | 53.18 | 53.07 | 53.34 | 53.11 | 53.35 | |
(uA) | 15.36 | 15.66 | 15.63 | 15.37 | 15.65 | 15.64 | 14.94 | 15.23 | 15.26 | 15.15 | 15.39 | ||
Node 4 | (uA) | 123.75 | 123.78 | 124.26 | 124.42 | 124.89 | 124.8 | 125.26 | 125.04 | 125.04 | 125.23 | 124.65 | |
(uA) | 8.64 | 8.41 | 8.49 | 8.88 | 9.29 | 8.85 | 8.59 | 8.83 | 8.83 | 8.84 | 8.77 | ||
Transmission Duration | T (sg) | 1.27 | 1.28 | 1.28 | 1.28 | 1.28 | 1.3 | 1.29 | 1.29 | 1.27 | 1.29 | 1.28 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erazo-Rodas, M.; Sandoval-Moreno, M.; Muñoz-Romero, S.; Huerta, M.; Rivas-Lalaleo, D.; Rojo-Álvarez, J.L. Multiparametric Monitoring in Equatorian Tomato Greenhouses (II): Energy Consumption Dynamics. Sensors 2018, 18, 2556. https://doi.org/10.3390/s18082556
Erazo-Rodas M, Sandoval-Moreno M, Muñoz-Romero S, Huerta M, Rivas-Lalaleo D, Rojo-Álvarez JL. Multiparametric Monitoring in Equatorian Tomato Greenhouses (II): Energy Consumption Dynamics. Sensors. 2018; 18(8):2556. https://doi.org/10.3390/s18082556
Chicago/Turabian StyleErazo-Rodas, Mayra, Mary Sandoval-Moreno, Sergio Muñoz-Romero, Mónica Huerta, David Rivas-Lalaleo, and José Luis Rojo-Álvarez. 2018. "Multiparametric Monitoring in Equatorian Tomato Greenhouses (II): Energy Consumption Dynamics" Sensors 18, no. 8: 2556. https://doi.org/10.3390/s18082556
APA StyleErazo-Rodas, M., Sandoval-Moreno, M., Muñoz-Romero, S., Huerta, M., Rivas-Lalaleo, D., & Rojo-Álvarez, J. L. (2018). Multiparametric Monitoring in Equatorian Tomato Greenhouses (II): Energy Consumption Dynamics. Sensors, 18(8), 2556. https://doi.org/10.3390/s18082556