Comparison between Different Structures of Suspended-Core Microstructured Optical Fibers for Volatiles Sensing
<p>MOF-1 (<b>A</b>), MOF-2 (<b>B</b>), and MOF-3 (<b>C</b>) cross section. In every figure, the detail of the core geometry can be appreciated and especially in (C), the hole located in the center of the optical fiber. MOF = microstructured optical fibers.</p> "> Figure 2
<p>Experimental setup used to control the construction process of the different MOF sensors. ITO = indium tin oxide; SMF = single mode fiber.</p> "> Figure 3
<p>Experimental setup used to simultaneously analyze the response of the sensors towards saturated atmospheres of ethanol.</p> "> Figure 4
<p>Characterization curves of the three different MOF sensors when they were exposed to temperatures from 25 °C to 65 °C.</p> "> Figure 5
<p>ITO nanofilm thickness measured for the MOF-3 using the SEM after 8 min of sputtering construction process.</p> "> Figure 6
<p>LP<sub>01</sub> modal field distribution for fiber MOF-1 (<b>A</b>), MOF-2 (<b>B</b>), and MOF-3 (<b>C</b>).</p> "> Figure 7
<p>Mode field distribution for MOF-1 with ITO thin film. LP<sub>01</sub> and LP<sub>11</sub> are present simultaneously in each polarization.</p> "> Figure 8
<p>Mode field distribution for MOF-2 with ITO thin film. LP<sub>01</sub> and LP<sub>11</sub> are present simultaneously in each polarization.</p> "> Figure 9
<p>Mode field distribution for MOF-3 with ITO thin film. LP<sub>01</sub> and LP<sub>11</sub> are present simultaneously in each polarization.</p> "> Figure 10
<p>(<b>A</b>) Optical spectrum of MOFs and their fast Fourier transform (FFTs) after ITO deposition; (<b>B</b>) in both figures, the vertical left axis is applied for MOF-1 and the right axis for MOF-2 and MOF-3.</p> "> Figure 11
<p>Phase responses of the three sensors for saturated atmospheres of ethanol.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Suspended-Core MOF Sensor Fabrication
2.2. Sensing Material
2.3. Experimental Set Up
2.4. Parameters and Software Used in the Theoretical Simulations
3. Results and Discussions
3.1. Deposition ITO Procedure
3.2. Suspended-Core MOF Field Distribution Simulations
3.2.1. Theoretical Simulations without ITO Nanofilm Deposited
3.2.2. Theoretical Simulations with an ITO Nanofilm
3.3. Ethanol Measurements
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chiuchiolo, A.; Bajas, H.; Bajko, M.; Bottura, L.; Consales, M.; Cusano, A.; Giordano, M.; Perez, J.C. Advances in Fiber Optic Sensors Technology Development for Temperature and Strain Measurements in Superconducting Magnets and Devices. IEEE Trans. Appl. Superconduct. 2016, 26, 1–5. [Google Scholar] [CrossRef]
- Kersey, A.D. A review of recent developments in fiber optic sensor technology. Opt. Fiber Technol. 1996, 2, 291–317. [Google Scholar] [CrossRef]
- Lin, W.; Zhang, C.; Li, L.; Liang, S. Review on Development and Applications of Fiber-Optic Sensors. In Proceedings of the 2012 Symposium on Photonics and Optoelectronics, Shanghai, China, 21–23 May 2012. [Google Scholar] [CrossRef]
- Maute, M.; Raible, S.; Prins, F.; Kern, D.; Ulmer, H.; Weimar, U.; Göpel, W. Detection of volatile organic compounds (VOCs) with polymer-coated cantilevers. Sens. Actuators B Chem. 1999, 58, 505–511. [Google Scholar] [CrossRef]
- Elosua, C.; Bariain, C.; Luquin, A.; Laguna, M.; Matias, I.R. Optimization of single mode fibre sensors to detect organic vapours. Sens. Actuators B Chem. 2011, 157, 388–394. [Google Scholar] [CrossRef] [Green Version]
- Homayoonnia, S.; Zeinali, S. Design and fabrication of capacitive nanosensor based on MOF nanoparticles as sensing layer for VOCs detection. Sens. Actuators B Chem. 2016, 237, 776–786. [Google Scholar] [CrossRef]
- Pinto, A.M.R.; Lopez-Amo, M. Photonic Crystal Fibers for Sensing Applications. J. Sens. 2012, 2012, 1–21. [Google Scholar] [CrossRef]
- Liu, Z.; Tam, H.-Y.; Htein, L.; Tse, M.-L.V.; Lu, C. Microstructured Optical Fiber Sensors. J. Lightwave Technol. 2017, 35, 3425–3439. [Google Scholar] [CrossRef]
- Villatoro, J.; Finazzi, V.; Badenes, G.; Pruneri, V. Highly sensitive sensors based on photonic crystal fiber modal interferometers. J. Sens. 2009, 2009, 747803. [Google Scholar] [CrossRef]
- MacPherson, W.N.; Gander, M.J.; McBride, R.; Jones, J.D.C.; Blanchard, P.M.; Burnett, J.G.; Greenaway, A.H.; Mangan, B.; Birks, T.A.; Knight, J.C.; et al. Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre. Opt. Commun. 2001, 193, 97–104. [Google Scholar] [CrossRef]
- Villatoro, J.; Finazzi, V.; Minkovich, V.P.; Pruneri, V.; Badenes, G. Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing. Appl. Phys. Lett. 2007, 91, 89–92. [Google Scholar] [CrossRef]
- Shi, Q.; Lv, F.; Wang, Z.; Jin, L.; Hu, J.J.; Liu, Z.; Kai, G.; Dong, X. Environmentally Stable Fabry–Pérot-Type Strain Sensor Based On Hollow-Core Photonic Bandgap Fiber. IEEE Photonics Technol. Lett. 2008, 20, 2008–2010. [Google Scholar] [CrossRef]
- Shinde, Y.S.; Kaur Gahir, H. Dynamic Pressure Sensing Study Using Photonic Crystal Fiber: Application to Tsunami Sensing. IEEE Photonics Technol. Lett. 2008, 20, 279–281. [Google Scholar] [CrossRef]
- Martynkien, T.; Statkiewicz-Barabach, G.; Olszewski, J.; Wojcik, J.; Mergo, P.; Geernaert, T.; Sonnenfeld, C.; Anuszkiewicz, A.; Szczurowski, M.K.; Tarnowski, K.; et al. Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure. Opt. Express 2010, 18, 15113–15121. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.M.R.; Lopez-Amo, M.; Kobelke, J.; Schuster, K. Temperature Fiber laser sensor based on a hybrid cavity and a random mirror. J. Lightwave Technol. 2012, 30, 1168–1172. [Google Scholar] [CrossRef]
- Martynkien, T.; Szpulak, M.; Urbanczyk, W. Modeling and measurement of temperature sensitivity in birefringent photonic crystal holey fibers. Appl. Opt. 2005, 44, 7780–7788. [Google Scholar] [CrossRef] [PubMed]
- Lopez Aldaba, A.; Lopez-Torres, D.; Elosua, C.; Auguste, J.-L.; Jamier, R.; Roy, P.; Arregui, F.J.; Lopez-Amo, M. SnO2-MOF-Fabry-Perot optical sensor for relative humidity measurements. Sens. Actuators B Chem. 2018, 257, 189–199. [Google Scholar] [CrossRef]
- Lopez-torres, D.; Lopez-aldaba, A.; Elosua, C.; Ascorbe, J.; Rota, S.; Auguste, J.L.; Jamier, R.; Roy, P.; Lopez-Amo, M.; Arregui, F.J. Detection of Volatile Compounds with Ito Thin Films Deposited onto Suspended Core Optical Fiber. In Proceedings of the 16th IMCS, Jeju Island, Korea, 10–13 July 2016. [Google Scholar]
- Elosua, C.; Arregui, F.J.; Zamarreño, C.R.; Bariain, C.; Luquin, A.; Laguna, M.; Matias, I.R. Volatile organic compounds optical fiber sensor based on lossy mode resonances. Sens. Actuators B Chem. 2012, 173, 523–529. [Google Scholar] [CrossRef]
- Mirzaei, A.; Leonardi, S.G.; Neri, G. Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceram. Int. 2016, 42, 15119–15141. [Google Scholar] [CrossRef]
- Elosua, C.; Arregui, F.J.; Del Villar, I.; Ruiz-Zamarreño, C.; Corres, J.M.; Bariain, C.; Goicoechea, J.; Hernaez, M.; Rivero, P.J.; Socorro, A.B.; et al. Micro and nanostructured materials for the development of optical fibre sensors. Sensors (Switz.) 2017, 17, 2312. [Google Scholar] [CrossRef] [PubMed]
- Del Villar, I.; Arregui, F.J.; Corres, J.M.; Bariain, C.; Goicoechea, J.; Zamarreno, C.R.; Elosua, C.; Hernaez, M.; Rivero, P.J.; Socorro, A.B.; et al. Nanocoated optical fibre for lossy mode resonance (LMR) sensors and filters. In Proceedings of the 17th International Conference on Transparent Optical Networks (ICTON), Budapest, Hungary, 5–9 July 2015. [Google Scholar] [CrossRef]
- Zubiate, P.; Zamarreño, C.R.; Del Villar, I.; Matias, I.R.; Arregui, F.J. High sensitive refractometers based on lossy mode resonances (LMRs) supported by ITO coated D-shaped optical fibers. Opt. Express 2015, 23, 8045. [Google Scholar] [CrossRef] [PubMed]
- Leandro, D.; Bravo Acha, M.; Ortigosa, A.; Lopez-Amo, M. Real-time FFT analysis for interferometric sensors multiplexing. J. Lightwave Technol. 2015, 33, 354–360. [Google Scholar] [CrossRef]
- Rota-Rodrigo, S.; López-Aldaba, A.; Pérez-Herrera, R.A.; Del Carmen López Bautista, M.; Esteban, O.; López-Amo, M. Simultaneous measurement of humidity and vibration based on a microwire sensor system using fast fourier transform technique. J. Lightwave Technol. 2016, 34, 4525–4530. [Google Scholar] [CrossRef]
- Lopez-torres, D.; Elosua, C.; Villatoro, J.; Zubia, J.; Rothhardt, M.; Schuster, K.; Arregui, F.J. Enhancing sensitivity of photonic crystal fiber interferometric humidity sensor by the thickness of SnO2 thin films. Sens. Actuators B Chem. 2017, 251, 1059–1067. [Google Scholar] [CrossRef]
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2013, 24, 012004. [Google Scholar] [CrossRef]
- Xu, K.; Fu, C.; Gao, Z.; Wei, F.; Ying, Y.; Xu, C.; Fu, G. Nanomaterial-based gas sensors: A review. Instrum. Sci. Technol. 2017, 9149, 115–145. [Google Scholar] [CrossRef]
- Timmer, B.; Olthuis, W.; Van Den Berg, A. Ammonia sensors and their applications—A review. Sens. Actuators B Chem. 2005, 107, 666–677. [Google Scholar] [CrossRef]
- Cheng, J.P.; Wang, J.; Li, Q.Q.; Liu, H.G.; Li, Y. A review of recent developments in tin dioxide composites for gas sensing application. J. Ind. Eng. Chem. 2016, 44, 1–22. [Google Scholar] [CrossRef]
- Del Villar, I.; Arregui, F.J.; Zamarreno, C.R.; Corres, J.M.; Bariain, C.; Goicoechea, J.; Elosua, C.; Hernaez, M.; Rivero, P.J.; Socorro, A.B.; et al. Optical sensors based on lossy-mode resonances. Sens. Actuators B Chem. 2017, 240, 174–185. [Google Scholar] [CrossRef]
- Lopez-Aldaba, A.; Pinto, A.; Lopez-Amo, M.; Frazão, O.; Santos, J.; Baptista, J.; Baierl, H.; Auguste, J.-L.; Jamier, R.; Roy, P. Experimental and Numerical Characterization of a Hybrid Fabry-Pérot Cavity for Temperature Sensing. Sensors 2015, 15, 8042–8053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasanthi Pillay, V.; Goyal, S. Influence of Sputtering Power, Annealing on the Structural Properties of ITO Films, for Application in Ethanol Gas Sensor. Mater. Today Proc. 2015, 2, 4609–4619. [Google Scholar] [CrossRef]
- Penza, M.; Cassano, G. Application of principal component analysis and artificial neural networks to recognize the individual VOCs of methanol/2-propanol in a binary mixture by SAW multi-sensor array. Sens. Actuators B Chem. 2003, 89, 269–284. [Google Scholar] [CrossRef]
- Richard, E.; Mead, B.; Zlotnikov, E.; Park, H.; Us, N.J.; Haders, D.; Nj, S. Temperature and Humidity Compensation for Gas Detection Apparatus. U.S. Patent 4730479A, 23 June 1986. [Google Scholar]
- Khan, M.R.R.; Kang, B.-H.; Lee, S.-W.; Kim, S.-H.; Yeom, S.-H.; Lee, S.-H.; Kang, S.-W. Fiber-optic multi-sensor array for detection of low concentration volatile organic compounds. Opt. Express 2013, 21, 20119–20130. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Aldaba, A.; Lopez-Torres, D.; Elosua, C.; Arregui, F.J.; Auguste, J.; Jamier, R.; Roy, P.; Lopez-Amo, M. Real time measuring system of multiple chemical parameters using microstructured optical fibers based sensors. IEEE Sens. J. 2018, 18, 5343–5351. [Google Scholar] [CrossRef]
- Snyder, A.W.; Young, W.R. Modes of optical waveguides. J. Opt. Soc. Am. 1978, 68, 297–309. [Google Scholar] [CrossRef]
- Lopez-Torres, D.; Elosua, C.; Villatoro, J.; Zubia, J.; Rothhardt, M.; Schuster, K.; Arregui, F.J. Photonic crystal fiber interferometer coated with a PAH/PAA nanolayer as humidity sensor. Sens. Actuators B Chem. 2017, 242, 1065–1072. [Google Scholar] [CrossRef]
- Yin, D.; Schmidt, H.; Barber, J.; Hawkins, A. Integrated ARROW waveguides with hollow cores. Opt. Express 2004, 12, 2710–2715. [Google Scholar] [CrossRef] [PubMed]
- Bise, R.; Windeler, R. Tunable photonic band gap fiber. In Proceedings of the Optical Fiber Communication Conference and Exhibit, Anaheim, CA, USA, 17–22 March 2002. [Google Scholar]
- Lopez-amo, M.; Menendez-valdes, P.; Muriel, M.A. Depressed-Index Waveguides (DIW’s) in Integrated Optics. J. Lightwave Technol. 1990, 8, 1779–1791. [Google Scholar] [CrossRef]
- Kim, B.; Ahn, J.; Chung, P.; Chung, Y. Microstructured optical fiber-based micro-cavity sensor for chemical detection. Proc. SPIE 2014, 8938, 89380L. [Google Scholar] [CrossRef]
Maximum Optical Field (V/M) | Maximum Evanescent Field (V/M) | ||
---|---|---|---|
MOF-1 | WITHOUT ITO | 50 | 38 |
WITH ITO | 147 | 70 | |
MOF-2 | WITHOUT ITO | 340 | 100 |
WITH ITO | 181 | 90 | |
MOF-3 | WITHOUT ITO | 63 | 40 |
WITH ITO | 340 | 200 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez-Torres, D.; Lopez-Aldaba, A.; Elosua, C.; Auguste, J.L.; Jamier, R.; Roy, P.; Lopez-Amo, M.; Arregui, F.J. Comparison between Different Structures of Suspended-Core Microstructured Optical Fibers for Volatiles Sensing. Sensors 2018, 18, 2523. https://doi.org/10.3390/s18082523
Lopez-Torres D, Lopez-Aldaba A, Elosua C, Auguste JL, Jamier R, Roy P, Lopez-Amo M, Arregui FJ. Comparison between Different Structures of Suspended-Core Microstructured Optical Fibers for Volatiles Sensing. Sensors. 2018; 18(8):2523. https://doi.org/10.3390/s18082523
Chicago/Turabian StyleLopez-Torres, Diego, Aitor Lopez-Aldaba, Cesar Elosua, Jean L. Auguste, Rapahel Jamier, Philippe Roy, Manuel Lopez-Amo, and Francisco J. Arregui. 2018. "Comparison between Different Structures of Suspended-Core Microstructured Optical Fibers for Volatiles Sensing" Sensors 18, no. 8: 2523. https://doi.org/10.3390/s18082523
APA StyleLopez-Torres, D., Lopez-Aldaba, A., Elosua, C., Auguste, J. L., Jamier, R., Roy, P., Lopez-Amo, M., & Arregui, F. J. (2018). Comparison between Different Structures of Suspended-Core Microstructured Optical Fibers for Volatiles Sensing. Sensors, 18(8), 2523. https://doi.org/10.3390/s18082523