Damage Detection of L-Shaped Concrete Filled Steel Tube (L-CFST) Columns under Cyclic Loading Using Embedded Piezoceramic Transducers
<p>The L-shaped concrete filled steel tube (L-CFST) column specimen. SA—smart aggregates. (<b>a</b>) Cross-sectional drawing of the specimen; (<b>b</b>) A-A Sectional drawing; (<b>c</b>) A photo of the specimen.</p> "> Figure 1 Cont.
<p>The L-shaped concrete filled steel tube (L-CFST) column specimen. SA—smart aggregates. (<b>a</b>) Cross-sectional drawing of the specimen; (<b>b</b>) A-A Sectional drawing; (<b>c</b>) A photo of the specimen.</p> "> Figure 2
<p>The procedure of embedment of SA. (<b>a</b>) The SA prior to embedment; (<b>b</b>) The placement of SA; (<b>c</b>) A photo of the PVC mold.</p> "> Figure 3
<p>The loading setup and the specimen. (<b>a</b>) Schematic of testing apparatus and a specimen; (<b>b</b>) A photo of the testing setup and a specimen.</p> "> Figure 4
<p>The test loading schedule.</p> "> Figure 5
<p>Schematic of experimental instrumentation.</p> "> Figure 6
<p>Details of the specimen—a cross-sectional view.</p> "> Figure 7
<p>The loading schedule of L-CFST2 (in terms of displacement).</p> "> Figure 8
<p>Sectional view of damages of L-CFST2. (<b>a</b>) Condition 8 slight buckle in Side 1; (<b>b</b>) Condition 12 buckle in side 1; (<b>c</b>) Condition 18 severer buckle in side 1; (<b>d</b>) Condition 2 severer buckle in side 1; (<b>e</b>) Condition 30 severer buckle in side 1; (<b>f</b>) Condition 34 severer buckle in side 1; (<b>g</b>) Condition 13 severer buckle in side 3; (<b>h</b>) Condition 20 severer buckle in side 2; (<b>i</b>) Condition 25 severer buckle in side 4; (<b>j</b>) Condition 32 severer buckle in side 6, the weld cracked; (<b>k</b>) Condition 32 the weld cracked.</p> "> Figure 8 Cont.
<p>Sectional view of damages of L-CFST2. (<b>a</b>) Condition 8 slight buckle in Side 1; (<b>b</b>) Condition 12 buckle in side 1; (<b>c</b>) Condition 18 severer buckle in side 1; (<b>d</b>) Condition 2 severer buckle in side 1; (<b>e</b>) Condition 30 severer buckle in side 1; (<b>f</b>) Condition 34 severer buckle in side 1; (<b>g</b>) Condition 13 severer buckle in side 3; (<b>h</b>) Condition 20 severer buckle in side 2; (<b>i</b>) Condition 25 severer buckle in side 4; (<b>j</b>) Condition 32 severer buckle in side 6, the weld cracked; (<b>k</b>) Condition 32 the weld cracked.</p> "> Figure 9
<p>Hysteretic curves and skeleton curves. (<b>a</b>) L-CFST1; (<b>b</b>) L-CFST2; (<b>c</b>) L-CFST3.</p> "> Figure 9 Cont.
<p>Hysteretic curves and skeleton curves. (<b>a</b>) L-CFST1; (<b>b</b>) L-CFST2; (<b>c</b>) L-CFST3.</p> "> Figure 10
<p>Three cyclic skeleton curves of L-CFST2.</p> "> Figure 11
<p>Skeleton curves of three specimens.</p> "> Figure 12
<p>SA4 output voltage signal of L-CFST2. (<b>a</b>) SA4 output voltage signal in the healthy state; (<b>b</b>) SA4 output voltage signal under 5 mm; (<b>c</b>) SA4 output voltage signal under 10 mm; (<b>d</b>) SA4 output voltage signal under 15 mm; (<b>e</b>) SA4 output voltage signal under 20 mm; (<b>f</b>) SA4 output voltage signal under 30 mm.</p> "> Figure 12 Cont.
<p>SA4 output voltage signal of L-CFST2. (<b>a</b>) SA4 output voltage signal in the healthy state; (<b>b</b>) SA4 output voltage signal under 5 mm; (<b>c</b>) SA4 output voltage signal under 10 mm; (<b>d</b>) SA4 output voltage signal under 15 mm; (<b>e</b>) SA4 output voltage signal under 20 mm; (<b>f</b>) SA4 output voltage signal under 30 mm.</p> "> Figure 13
<p>Damage index (DI) vs. displacement for L-CFST1. (<b>a</b>) DI vs. positive and negative peak displacements; (<b>b</b>) DI vs. zero displacement.</p> "> Figure 14
<p>DIs vs. displacement for L-CFST2. (<b>a</b>) DI vs. positive and negative peak displacements; (<b>b</b>) DI vs. zero displacement.</p> "> Figure 15
<p>DIs vs. displacement of L-CFST3. (<b>a</b>) DI vs. positive and negative peak displacements; (<b>b</b>) DI vs. zero displacement.</p> "> Figure 16
<p>DI vs. displacement of all specimens. (<b>a</b>) L-CFST1; (<b>b</b>) L-CFST2; (<b>c</b>) L-CFST3.</p> "> Figure 16 Cont.
<p>DI vs. displacement of all specimens. (<b>a</b>) L-CFST1; (<b>b</b>) L-CFST2; (<b>c</b>) L-CFST3.</p> "> Figure 17
<p>DI vs. positive peak displacement for all specimens.</p> ">
Abstract
:1. Introduction
2. Experimental Setup
2.1. Design of Specimens
2.2. Properties of Materials
2.3. Methods of Test Loading and Data Acquisition
3. Results and Discussion
3.1. Experimental Phenomena
3.2. Hysteretic Curves and Skeleton Curves
3.3. Damage Detection Using Active Sensing
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wille, K.; Naaman, A.E.; Parra-Montesinos, G.J. Ultra-High Performance Concrete with Compressive Strength Exceeding 150 MPa (22 ksi): A Simpler Way. ACI Mater. J. 2011, 108, 34–46. [Google Scholar]
- Zheng, Y.; Taylor, S.; Robinson, D.; Cleland, J.D. Investigation of ultimate strength of deck slabs in steel-concrete bridges. ACI Struct. J. 2010, 107, 82–91. [Google Scholar]
- Ghahari, S.A.; Ghafari, E.; Lu, N. Effect of ZnO nanoparticles on thermoelectric properties of cement composite for waste heat harvesting. Constr. Build. Mater. 2017, 146, 755–763. [Google Scholar] [CrossRef]
- Lu, N.; Oza, S. A comparative study of the mechanical properties of hemp fiber with virgin and recycled high density polyethylene matrix. Compos. Part B 2013, 45, 1651–1656. [Google Scholar] [CrossRef]
- Shams, M.; Saadeghvaziri, M.A. State of the art of concrete-filled steel tubular columns. ACI Struct. J. 1997, 94, 558–571. [Google Scholar]
- Portolés, J.M.; Romero, M.L.; Bonet, J.L.; Filippou, F.C. Experimental study of high strength concrete-filled circular tubular columns under eccentric loading. J. Constr. Steel Res. 2011, 67, 623–633. [Google Scholar] [CrossRef] [Green Version]
- Gourley, B.C.; Tort, C.; Hajjar, J.F.; Schiller, P.H. A Synopsis of Studies of the Monotonic and Cyclic Behavior of Concrete-Filled Steel Tube Beam-Columns; Structural Engineering Report No. ST-01-4; University of Minnesota: Minneapolis, MN, USA, 2001. [Google Scholar]
- Lee, S.H.; Uy, B.; Kim, S.H.; Choi, Y.H.; Choi, S.M. Behavior of high-strength circular concrete-filled steel tubular (CFST) column under eccentric loading. J. Constr. Steel Res. 2013, 67, 1–13. [Google Scholar] [CrossRef]
- Sakino, K.; Nakahara, H.; Morino, S.; Nishiyama, I. Behavior of Centrally Loaded Concrete-Filled Steel-Tube Short Columns. J. Struct. Eng. 2004, 130, 180–188. [Google Scholar] [CrossRef]
- Varma, A.H.; Ricles, J.M.; Sause, R.; Lu, L.W. Seismic behavior and modeling of high-strength composite concrete-filled steel tube (CFT) beam-columns. J. Constr. Steel Res. 2002, 58, 725–758. [Google Scholar] [CrossRef]
- Varma, A.H.; Ricles, J.M.; Sause, R.; Lu, L.W. Seismic Behavior and Design of High-Strength Square Concrete-Filled Steel Tube Beam Columns. J. Struct. Eng. 2004, 130, 169–179. [Google Scholar] [CrossRef]
- Varma, A.H.; Ricles, J.M.; Sause, R.; Lu, L.W. Experimental Behavior of High Strength Square Concrete-Filled Steel Tube Beam-Columns. J. Struct. Eng. 2002, 128, 309–318. [Google Scholar] [CrossRef]
- Wang, D.; Lu, X. Experimental study on seismic behavior of concrete-filled steel T-section and L-section columns. J. Build. Struct. 2005, 26, 39–44. [Google Scholar]
- Shen, Z.Y.; Lei, M.; Li, Y.Q.; Lin, Z.Y.; Luo, J.H. Experimental Study on Seismic Behavior of Concrete-Filled L-Shaped Steel Tube Columns. Adv. Struct. Eng. 2013, 16, 1235–1248. [Google Scholar] [CrossRef]
- Zhang, G.; Li, F.; Rong, B. Research on unidirectional compression-bending stability of L-shaped specially-shaped column composed of concrete-filled square steel tube. Build. Struct. 2015, 8, 15. [Google Scholar]
- Luca, A.D.; Caputo, F.; Khodaei, Z.S.; Aliabadi, M.H. Damage characterization of composite plates under low velocity impact using ultrasonic guided waves. Compos. Part B Eng. 2017, 138, 168–180. [Google Scholar] [CrossRef]
- Zou, F.; Rao, J.; Aliabadi, M.H. Highly accurate online characterisation of cracks in plate-like structures. NDT E Int. 2017, 94, 1–12. [Google Scholar] [CrossRef]
- Carpinteri, A.; Lacidogna, G.; Niccolini, G. Damage analysis of reinforced concrete buildings by the acoustic emission technique. Struct. Control Health Monit. 2011, 18, 660–673. [Google Scholar] [CrossRef]
- Behnia, A.; Chai, H.K.; Shiotani, T. Advanced structural health monitoring of concrete structures with the aid of acoustic emission. Constr. Build. Mater. 2014, 65, 282–302. [Google Scholar] [CrossRef]
- Rucka, M.; Wilde, K. Experimental Study on Ultrasonic Monitoring of Splitting Failure in Reinforced Concrete. J. Nondestruct. Eval. 2013, 32, 372–383. [Google Scholar] [CrossRef] [Green Version]
- Antonaci, P.; Bruno, C.L.E.; Gliozzi, A.S.; Scalerandi, M. Monitoring evolution of compressive damage in concrete with linear and nonlinear ultrasonic methods. Cem. Concr. Res. 2010, 40, 1106–1113. [Google Scholar] [CrossRef]
- Yue, N.; Sharif Khodaei, Z.; Aliabadi, F.M.H. Damage Detectability Model of Pitch-Catch Configuration in Composite Plates. Key Eng. Mater. 2017, 754, 387–390. [Google Scholar] [CrossRef] [Green Version]
- Salmanpour, M.S.; Sharif, Z.K.; Aliabadi, M. Impact Damage Localisation with Piezoelectric Sensors under Operational and Environmental Conditions. Sensors 2017, 17, 1178. [Google Scholar] [CrossRef] [PubMed]
- Zou, F.; Aliabadi, M.H. On modelling three-dimensional piezoelectric smart structures with boundary spectral element method. Smart Mater. Struct. 2017, 26, 55015. [Google Scholar] [CrossRef]
- Cahill, P.; O’Keeffe, R.; Jackson, N.; Mathewson, A.; Pakrashi, V. Structural Health Monitoring of Reinforced Concrete Beam Using Piezoelectric Energy Harvesting System. In Proceedings of the EWSHM-7th European Workshop on Structural Health Monitoring, Nantes, France, 8–11 July 2014. [Google Scholar]
- Kerrouche, A.; Boyle, W.J.O.; Sun, T.; Grattan, K.T.V.; Schmidt, J.W.; Taljsten, B. Strain measurement usingembedded fiber Bragg grating sensors inside an anchored carbon fiber polymer reinforcement prestressing rod for structural monitoring. IEEE Sens. J. 2009, 9, 1456–1461. [Google Scholar] [CrossRef] [Green Version]
- Ho, S.; Li, W.; Wang, B.; Song, G. A load measuring anchor plate for rock bolt using fiber optic sensor. Smart Mater. Struct. 2017, 26, 57003. [Google Scholar] [CrossRef]
- DeäŸErliyurt, B.; KarataåŸ, C.; Şahin, M.; Yaman, Y. Structural Health Monitoring System of Composite Beams with Surface Bonded and Embedded Fibre Bragg Grating Sensors. Key Eng. Mater. 2017, 744, 332–336. [Google Scholar] [CrossRef]
- Tjin, S.C.; Wang, Y.; Sun, X.; Moyo, P.; Brownjohn, J.M.W. Application of quasi-distributed fibre Bragg grating sensors in reinforced concrete structures. Meas. Sci. Technol. 2002, 13, 583. [Google Scholar] [CrossRef]
- Mallardo, V.; Khodaei, Z.S.; Aliabadi, F.M.H. A Bayesian Approach for Sensor Optimisation in Impact Identification. Materials 2016, 9, 946. [Google Scholar] [CrossRef] [PubMed]
- Zou, F.; Aliabadi, M.H.; Benedetti, I. A boundary element model for structural health monitoring using piezoelectric transducers. Smart Mater. Struct. 2013, 23, 015022. [Google Scholar] [CrossRef] [Green Version]
- Chalioris, C.E.; Karayannis, C.G.; Angeli, G.M.; Papadopoulos, N.A.; Favvata, M.J.; Providakis, C.P. Applications of smart piezoelectric materials in a wireless admittance monitoring system (WiAMS) to Structures—Tests in RC elements. Case Stud. Constr. Mater. 2016, 5, 1–18. [Google Scholar] [CrossRef]
- Vitola, J.; Pozo, F.; Tibaduiza, D.A.; Anaya, M. Distributed Piezoelectric Sensor System for Damage Identification in Structures Subjected to Temperature Changes. Sensors 2017, 17, 1252. [Google Scholar] [CrossRef] [PubMed]
- Dumoulin, C.; Karaiskos, G.; Sener, J.Y.; Deraemaeker, A. Online monitoring of cracking in concrete structures using embedded piezoelectric transducers. Smart Mater. Struct. 2014, 23, 115016. [Google Scholar] [CrossRef]
- Sharifkhodaei, Z.; Ghajari, M.; Aliabadi, M.H. Impact Damage Detection in Composite Plates using a Self-diagnostic Electro-Mechanical Impedance-based Structural Health Monitoring System. J. Multiscale Model. 2015, 6, 1550013. [Google Scholar] [CrossRef] [Green Version]
- Song, G.; Gu, H.; Mo, Y.; Mo, Y.L.; Hsu, T.T.C.; Dhonde, H. Concrete structural health monitoring using embedded piezoceramic transducers. Smart Mater. Struct. 2007, 16, 959–968. [Google Scholar] [CrossRef]
- Du, G.; Zhang, J.; Zhang, J.; Song, G. Experimental study on stress monitoring of sand-filled steel tube during impact using piezoceramic smart aggregates. Sensors 2017, 17, 1930. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Kong, Q.; Ho, S.C.M.; Lim, I.; Mo, Y.L.; Song, G. Feasibility study of using smart aggregates as embedded acoustic emission sensors for health monitoring of concrete structures. Smart Mater. Struct. 2016, 25, 115031. [Google Scholar] [CrossRef]
- Du, G.; Huo, L.; Kong, Q.; Song, G. Damage detection of pipeline multiple cracks using piezoceramic transducers. J. Vib. 2016, 18, 2828–2838. [Google Scholar] [CrossRef]
- Feng, Q.; Kong, Q.; Song, G. Damage detection of concrete piles subject to typical damage types based on stress wave measurement using embedded smart aggregates transducers. Measurement 2016, 88, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Kong, Q.; Hou, S.; Ji, Q.; Mo, Y.L.; Song, G. Very early age concrete hydration characterization monitoring using piezoceramic based smart aggregates. Smart Mater. Struct. 2013, 22, 085025. [Google Scholar] [CrossRef]
- Markovic, N.; Nestorovic, T.; Stojic, D. Numerical modeling of damage detection in concrete beams using piezoelectric patches. Mech. Res. Commun. 2015, 64, 15–22. [Google Scholar] [CrossRef]
- Du, G.; Kong, Q.; Wu, F.; Ruan, J.; Song, G. An experimental feasibility study of pipeline corrosion pit detection using a piezoceramic time reversal mirror. Smart Mater. Struct. 2016, 25, 037002. [Google Scholar] [CrossRef]
- Chalioris, C.E.; Papadopoulos, N.A.; Angeli, G.M.; Karayannis, C.G.; Liolios, A.A.; Providakis, C.P. Damage evaluation in shear-critical reinforced concrete beam using piezoelectric transducers as smart aggregates. Open Eng. 2015, 5, 373–384. [Google Scholar] [CrossRef]
- Nestorović, T.; Stojić, D.; Marković, N. Active Structural Health Monitoring of Reinforced Concrete Structures using Piezoelectric Smart Aggregates. In Proceedings of the 8th European Workshop on Structural Health Monitoring (EWSHM 2016), Bilbao, Spain, 5–8 July 2016. [Google Scholar]
- Olmi, C.; Gu, H.; Song, G. An overheight vehiclebridge collision monitoring system using piezoelectric transducers. Smart Mater. Struct. 2007, 16, 462–468. [Google Scholar]
- Ghafari, E.; Yuan, Y.; Wu, C.; Nantung, T.; Lu, N. Evaluation the compressive strength of the cement paste blended with supplementary cementitious materials using a piezoelectric-based sensor. Constr. Build. Mater. 2018, 171, 504–510. [Google Scholar] [CrossRef]
- Wang, L.; Tseng, K.K. Smart piezoelectric transducers for in situ health monitoring of concrete. Smart Mater. Struct. 2004, 13, 1017. [Google Scholar]
- Liu, P.; Wang, W.; Chen, Y.; Feng, X.; Miao, L. Concrete damage diagnosis using electromechanical impedance technique. Constr. Build. Mater. 2017, 136, 450–455. [Google Scholar] [CrossRef]
- Zou, F.; Aliabadi, M.H. A boundary element method for detection of damages and self-diagnosis of transducers using electro-mechanical impedance. Smart Mater. Struct. 2015, 24, 95015. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, Y.; Lu, Y. Sensitivity of PZT impedance sensors for damage detection of concrete structures. Sensors 2008, 8, 327–346. [Google Scholar] [CrossRef] [PubMed]
- Providakis, C.P.; Voutetaki, M.E. Electromechanical admittance-based damage identification using box-behnken design of experiments. Sid Struct. Integr. Durab. 2007, 3, 211–227. [Google Scholar]
- Xu, D.; Cheng, X.; Huang, S.; Jiang, M. Identifying technology for structural damage based on the impedance analysis of piezoelectric sensor. Constr. Build. Mater. 2010, 24, 2522–2527. [Google Scholar] [CrossRef]
- Madhav, A.V.G.; Kiong, S.C. Application of Electromechanical Impedance Technique for Engineering Structures: Review and Future Issues. J. Intell. Mater. Syst. Struct. 2010, 21, 41–59. [Google Scholar]
- Karayannis, C.G.; Chalioris, C.E.; Angeli, G.M.; Papadopoulos, N.A.; Favvata, M.J.; Providakis, C.P. Experimental damage evaluation of reinforced concrete steel bars using piezoelectric sensors. Constr. Build. Mater. 2016, 105, 227–244. [Google Scholar] [CrossRef]
- Wang, D.; Song, H.; Zhu, H. Numerical and experimental studies on damage detection of a concrete beam based on PZT admittances and correlation coefficient. Constr. Build. Mater. 2013, 49, 564–574. [Google Scholar] [CrossRef]
- Gu, H.; Song, G.; Dhonde, H.; Mo, Y.; Yan, S. Concrete early-age strength monitoring using embedded piezoelectric transducers. Smart Mater. Struct. 2006, 15, 1837. [Google Scholar] [CrossRef]
- Divsholi, B.S.; Yang, Y. Combined embedded and surface-bonded piezoelectric transducers for monitoring of concrete structures. NDT E Int. 2014, 65, 28–34. [Google Scholar] [CrossRef]
- Zou, D.; Liu, T.; Huang, Y.; Teng, J. Exploratory study on sulfate attack monitoring of concrete structures using piezoceramic based smart aggregates. Smart Mater. Struct. 2013, 22, 065002. [Google Scholar]
- Feng, Q.; Kong, Q.; Huo, L.; Song, G. Crack detection and leakage monitoring on reinforced concrete pipe. Smart Mater. Struct. 2015, 24, 115020. [Google Scholar] [CrossRef]
- Kong, Q.; Feng, Q.; Song, G. Water presence detection in a concrete crack using smart aggregates. Int. J. Smart Nano Mater. 2015, 6, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Zhang, T.; Song, G.; Gu, H. Active interface debonding detection of a concrete-filled steel tube with piezoelectric technologies using wavelet packet analysis. Mech. Syst. Signal Proc. 2013, 36, 7–17. [Google Scholar] [CrossRef]
- Jiang, T.; Kong, Q.; Wang, W.; Wang, W.; Huo, L.; Song, G. Monitoring of Grouting Compactness in a Post-Tensioning Tendon Duct Using Piezoceramic Transducers. Sensors 2016, 16, 1343. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Moslehy, Y.; Sanders, D.; Song, G.; Mo, Y.L. Multi-functional smart aggregate-based structural health monitoring of circular reinforced concrete columns subjected to seismic excitations. Smart Mater. Struct. 2010, 19, 065026. [Google Scholar] [CrossRef]
- Liao, W.I.; Lin, C.H.; Hwang, J.S.; Song, G. Seismic health monitoring of RC frame structures using smart aggregates. Earthq. Eng. Eng. Vib. 2013, 12, 25–32. [Google Scholar] [CrossRef]
- Kong, Q.; Robert, R.; Silva, P.; Mo, Y.L. Cyclic Crack Monitoring of a Reinforced Concrete Column under Simulated Pseudo-Dynamic Loading Using Piezoceramic-Based Smart Aggregates. Appl. Sci. 2016, 6, 341. [Google Scholar] [CrossRef]
- Liao, W.; Wang, J.X.; Song, G.; Gu, H.; Olmi, C.; Mo, Y.L.; Chang, K.C.; Loh, C.H. Structural health monitoring of concrete columns subjected to seismic excitations using piezoceramic-based sensors. Smart Mater. Struct. 2011, 20, 125015. [Google Scholar] [CrossRef]
- Hera, A.; Hou, Z. Application of wavelet approach for ASCE structural health monitoring benchmark studies. J. Eng. Mech. 2004, 130, 96–104. [Google Scholar] [CrossRef]
Serial Number | Wall Thickness/mm | Length H/mm | Effective Length L/mm | Slenderness Ratio λ | Axial force/kN |
---|---|---|---|---|---|
L-CFST1 | 3 | 1300 | 980 | 22.22 | 600 |
L-CFST2 | 4 | 1300 | 980 | 22.22 | 600 |
L-CFST3 | 5 | 1300 | 980 | 22.22 | 600 |
Thickness/mm | Yield Strength fy/MPa | Ultimate Strength fu/MPa |
---|---|---|
3 mm | 352.67 | 464.67 |
4 mm | 360.67 | 464.00 |
5 mm | 360.00 | 423.67 |
Specification Strength | fcu/Mpa | fc/Mpa |
---|---|---|
C45 | 48.35 | 36.75 |
Specimen | L-CFST1 | L-CFST2 | L-CFST3 |
---|---|---|---|
Actuator (internal) | SA1 | SA3 | SA5 |
Sensor (internal) | SA2 | SA4 | SA6 |
Start Frequency | Stop Frequency | Period | Amplitude |
---|---|---|---|
1 kHz | 300 kHz | 1 s | 10 V |
Condition # | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Load displacement (cm) | 10 | −10 | 10 | −10 | 10 | −10 | 20 | −20 | 20 |
Condition # | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
Load displacement (cm) | −20 | 20 | −20 | 30 | −30 | 30 | -30 | 30 | −30 |
Condition # | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
Load displacement (cm) | 40 | −40 | 40 | −40 | 40 | −40 | 50 | −50 | 50 |
Condition # | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
Load displacement (cm) | −50 | 50 | −50 | 60 | −60 | 60 | −60 | 60 | −60 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Li, Y.; Du, G.; Song, G. Damage Detection of L-Shaped Concrete Filled Steel Tube (L-CFST) Columns under Cyclic Loading Using Embedded Piezoceramic Transducers. Sensors 2018, 18, 2171. https://doi.org/10.3390/s18072171
Zhang J, Li Y, Du G, Song G. Damage Detection of L-Shaped Concrete Filled Steel Tube (L-CFST) Columns under Cyclic Loading Using Embedded Piezoceramic Transducers. Sensors. 2018; 18(7):2171. https://doi.org/10.3390/s18072171
Chicago/Turabian StyleZhang, Juan, Yong Li, Guofeng Du, and Gangbing Song. 2018. "Damage Detection of L-Shaped Concrete Filled Steel Tube (L-CFST) Columns under Cyclic Loading Using Embedded Piezoceramic Transducers" Sensors 18, no. 7: 2171. https://doi.org/10.3390/s18072171
APA StyleZhang, J., Li, Y., Du, G., & Song, G. (2018). Damage Detection of L-Shaped Concrete Filled Steel Tube (L-CFST) Columns under Cyclic Loading Using Embedded Piezoceramic Transducers. Sensors, 18(7), 2171. https://doi.org/10.3390/s18072171