A Review of Emotion Recognition Using Physiological Signals
<p>Plutchik’s Wheel of Emotions.</p> "> Figure 2
<p>2D emotion space model.</p> "> Figure 3
<p>3D emotion space model.</p> "> Figure 4
<p>(<b>a</b>) MAUI—Multimodal Affective User Interface; (<b>b</b>) Framework of AVRS; (<b>c</b>) VR scenes cut show.</p> "> Figure 5
<p>Position of the bio-sensors.</p> "> Figure 6
<p>(<b>a</b>) Mean accuracy of different channels; (<b>b</b>) The performance of different windows sizes; (<b>c</b>) The average accuracies of GELM; (<b>d</b>) Spectrogram shows different patterns with different emotions.</p> "> Figure 7
<p>(<b>a</b>) Logical scheme of the overall short-time emotion recognition concept; (<b>b</b>) Instantaneous tracking of the HR V indices computed from a representative subject using the proposed NARI model during the passive emotional elicitation (two neutral sessions alternated to a L-M and a M-H arousal session); (<b>c</b>) Diagram of the proposed method; (<b>d</b>) Experimental results.</p> "> Figure 8
<p>(<b>a</b>) The Emotion Check device; (<b>b</b>) Diagram describing the components of the Emotion Check device; (<b>c</b>) Prototype of glove with sensor unit; (<b>d</b>) Body Media Sense Wear Armband; (<b>e</b>) Left: The physiological measures of EMG and EDA. Middle: The physiological measures of EEG, BVP and TMP. Right: The physiological measures of physiological sensors in the experiments; (<b>g</b>) Illustration of R-TIPS. This platform allows wireless monitoring of cardiac signals. It consists of a transmitter system and three sensors; (<b>f</b>) The transmitter system is placed on the participant’s hip, and the sensors are placed below right breast, on the right side, and on the back.</p> "> Figure 9
<p>(<b>a</b>) Monitoring of epileptic seizures using EDA; (<b>b</b>,<b>c</b>) Wearable GSR sensor.</p> "> Figure 10
<p>Emotion recognition process using physiological signals under target emotion stimulation.</p> "> Figure 11
<p>(<b>a</b>) The decomposition of R-R interval signal (emotion of sadness); (<b>b</b>) The structure of Autoencoder; (<b>c</b>) The structure of Bimodal Deep AutoEncoder.</p> "> Figure 12
<p>(<b>a</b>) Typical framework of multimodal information fusion; (<b>b</b>) SVM results for different emotions with EEG frequency band; (<b>c</b>) Demo of the proposed feature level fusion. A feature vector created at any time step is valid for the next two steps.</p> "> Figure 13
<p>Classification models.</p> "> Figure 14
<p>(<b>a</b>) The structure of standard RNN and LSTM; (<b>b</b>) The structure and settings of CNN.</p> "> Figure 15
<p>ROC.</p> "> Figure 16
<p>Comparative results on the same public accessible datasets: (<b>a</b>) DEAP; (<b>b</b>) MAHNOB; database; (<b>c</b>) SEED.</p> "> Figure 17
<p>The comparation of recognition rate among previous research.</p> "> Figure 18
<p>Subject-dependent and Subject-independent recognition rate. (The horizontal axis represents the same sequence number as the <a href="#sensors-18-02074-t003" class="html-table">Table 3</a>. Different colors represent different classification categories: Blue—two categories, yellow—three categories, green four—categories, grey—five categories, purple—six categories).</p> ">
Abstract
:1. Introduction
2. Emotion Models
2.1. Discrete Emotion Models
2.2. Multi-Dimensional Emotion Space Model
2.3. Emotion Stimulation Tools
3. Emotional Relevant Features of Physiological Signals
3.1. EEG
3.2. ECG
3.3. HR
3.4. GSR
3.5. RSP
3.6. EMG
4. Methodology
4.1. Preprocessing
4.2. Traditional Machine Laerning Methods (Model-Specific Methods)
4.2.1. Feature Extraction
FFT and STFT
WT
EMD
Autoencoder
4.2.2. Feature Optimization
4.2.3. Feature Fusion
Early Fusion
Intermediate Fusion
Late Fusion
4.2.4. Classification
SVM
LDA
KNN
RF
4.3. Deep Learning Methods (Model-Free Methods)
CNN
DBN
PNN
LSTM
4.4. Model Assessment and Selection
4.4.1. Evaluation Method
Hold-Out Method
Crossing-Validation Method
4.4.2. Performance Evaluation Parameters
Accuracy
Precision Rate and Recall Rate
F1
Receiver Operating Characteristic Curve (ROC)
5. Database
5.1. Database for Emotion Analysis Using Physiological Signals (DEAP)
5.2. MAHNOB Database
5.3. SJTU Emotion EEG Dataset (SEED)
5.4. BioVid Emo DB
6. Summary
7. Problems and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- De Nadai, S.; D’Incà, M.; Parodi, F.; Benza, M.; Trotta, A.; Zero, E.; Zero, L.; Sacile, R. Enhancing safety of transport by road by on-line monitoring of driver emotions. In Proceedings of the 2016 11th System of Systems Engineering Conference (SoSE), Kongsberg, Norway, 12–16 June 2016; pp. 1–4. [Google Scholar]
- Guo, R.; Li, S.; He, L.; Gao, W.; Qi, H.; Owens, G. Pervasive and unobtrusive emotion sensing for human mental health. In Proceedings of the 7th International Conference on Pervasive Computing Technologies for Healthcare, Venice, Italy, 5–8 May 2013; pp. 436–439. [Google Scholar]
- Verschuere, B.; Crombez, G.; Koster, E.; Uzieblo, K. Psychopathy and Physiological Detection of Concealed Information: A review. Psychol. Belg. 2006, 46, 99–116. [Google Scholar] [CrossRef]
- Zhang, Y.D.; Yang, Z.J.; Lu, H.M.; Zhou, X.X.; Phillips, P.; Liu, Q.M.; Wang, S.H. Facial Emotion Recognition based on Biorthogonal Wavelet Entropy, Fuzzy Support Vector Machine, and Stratified Cross Validation. IEEE Access 2016, 4, 8375–8385. [Google Scholar] [CrossRef]
- Mao, Q.; Dong, M.; Huang, Z.; Zhan, Y. Learning Salient Features for Speech Emotion Recognition Using Convolutional Neural Networks. IEEE Trans. Multimed. 2014, 16, 2203–2213. [Google Scholar] [CrossRef]
- Cannon, W.B. The James-Lange theory of emotions: A critical examination and an alternative theory. Am. J. Psychol. 1927, 39, 106–124. [Google Scholar] [CrossRef]
- Ekman, P. An argument for basic emotions. Cogn. Emot. 1992, 6, 169–200. [Google Scholar] [CrossRef] [Green Version]
- Plutchik, R. The Nature of Emotions. Am. Sci. 2001, 89, 344–350. [Google Scholar] [CrossRef]
- Izard, C.E. Basic Emotions, Natural Kinds, Emotion Schemas, and a New Paradigm. Perspect. Psychol. Sci. 2007, 2, 260–280. [Google Scholar] [CrossRef] [PubMed]
- Izard, C.E. Emotion theory and research: Highlights, unanswered questions, and emerging issues. Annu. Rev. Psychol. 2008, 60, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Lang, P.J. The emotion probe: Studies of motivation and attention. Am. Psychol. 1995, 50, 372–385. [Google Scholar] [CrossRef] [PubMed]
- Mehrabian, A. Comparison of the PAD and PANAS as models for describing emotions and for differentiating anxiety from depression. J. Psychopathol. Behav. Assess. 1997, 19, 331–357. [Google Scholar] [CrossRef]
- Lang, P.J. International Affective Picture System (IAPS): Technical Manual and Affective Ratings; The Center for Research in Psychophysiology, University of Florida: Gainesville, FL, USA, 1995. [Google Scholar]
- Bai, L.; Ma, H.; Huang, H.; Luo, Y. The compilation of Chinese emotional picture system—A trial of 46 Chinese college students. Chin. J. Ment. Health 2005, 19, 719–722. [Google Scholar]
- Nasoz, F.; Alvarez, K. Emotion Recognition from Physiological Signals for Presence Technologies. Int. J. Cogn. Technol. Work 2003, 6, 4–14. [Google Scholar] [CrossRef]
- Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. DEAP: A Database for Emotion Analysis; Using Physiological Signals. IEEE Trans. Affect. Comput. 2012, 3, 18–31. [Google Scholar] [CrossRef]
- Zhang, W.; Shu, L.; Xu, X.; Liao, D. Affective Virtual Reality System (AVRS): Design and Ratings of Affective VR Scences. In Proceedings of the International Conference on Virtua lReality and Visualization, Zhengzhou, China, 21–22 October 2017. [Google Scholar]
- Merkx, P.P.; Truong, K.P.; Neerincx, M.A. Inducing and measuring emotion through a multiplayer first-person shooter computer game. In Proceedings of the Computer Games Workshop, Melbourne, Australia, 20 August 2007. [Google Scholar]
- Chanel, G.; Kierkels, J.J.; Soleymani, M.; Pun, T. Short-term emotion assessment in a recall paradigm. Int. J. Hum. Comput. Stud. 2009, 67, 607–627. [Google Scholar] [CrossRef] [Green Version]
- Kross, E.; Davidson, M.; Weber, J.; Ochsner, K. Coping with emotions past: The neural bases of regulating affect associated with negative autobiographical memories. Biol. Psychiatry 2009, 65, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Xu, X.; Shu, L.; Hu, B. Estimation of valence of emotion using two frontal EEG channels. In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, Kansas City, MO, USA, 13–16 November 2017; pp. 1127–1130. [Google Scholar]
- Lan, Z.; Sourina, O.; Wang, L.; Liu, Y. Real-time EEG-based emotion monitoring using stable features. Vis. Comput. 2016, 32, 347–358. [Google Scholar] [CrossRef]
- Qiao, R.; Qing, C.; Zhang, T.; Xing, X.; Xu, X. A novel deep-learning based framework for multi-subject emotion recognition. In Proceedings of the International Conference on Information, Cybernetics and Computational Social Systems, Dalian, China, 24–26 July 2017; pp. 181–185. [Google Scholar]
- Candra, H.; Yuwono, M.; Chai, R.; Handojoseno, A.; Elamvazuthi, I.; Nguyen, H.T.; Su, S. Investigation of window size in classification of EEG emotion signal with wavelet entropy and support vector machine. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 7250–7253. [Google Scholar]
- Zheng, W.L.; Zhu, J.Y.; Lu, B.L. Identifying Stable Patterns over Time for Emotion Recognition from EEG. IEEE Trans. Affect. Comput. 2016. [Google Scholar] [CrossRef]
- Mehmood, R.M.; Lee, H.J. Emotion classification of EEG brain signal using SVM and KNN. In Proceedings of the IEEE International Conference on Multimedia & Expo Workshops, Turin, Italy, 29 June–3 July 2015; pp. 1–5. [Google Scholar]
- Li, Z.; Tian, X.; Shu, L.; Xu, X.; Hu, B. Emotion Recognition from EEG Using RASM and LSTM. In Proceedings of the International Conference on Internet Multimedia Computing and Service, Tsingtao, China, 23–25 August 2017; pp. 310–318. [Google Scholar]
- Du, R.; Lee, H.J. Frontal alpha asymmetry during the audio emotional experiment revealed by event-related spectral perturbation. In Proceedings of the 2015 8th International Conference on Biomedical Engineering and Informatics (BMEI), Shenyang, China, 14–16 October 2015; pp. 531–536. [Google Scholar]
- Lin, Y.P.; Wang, C.H.; Jung, T.P.; Wu, T.L.; Jeng, S.K.; Duann, J.R.; Chen, J.H. EEG-Based Emotion Recognition in Music Listening. IEEE Trans. Bio-Med. Eng. 2010, 57, 1798–1806. [Google Scholar]
- Zheng, W.L.; Dong, B.N.; Lu, B.L. Multimodal emotion recognition using EEG and eye tracking data. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Chicago, IL, USA, 26–30 August 2014; pp. 5040–5043. [Google Scholar]
- Liu, S.; Meng, J.; Zhang, D.; Yang, J. Emotion recognition based on EEG changes in movie viewing. In Proceedings of the 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), Montpellier, France, 22–24 April 2015; pp. 1036–1039. [Google Scholar]
- Lai, Y.; Gao, T.; Wu, D.; Yao, D. Brain electrical research on music emotional perception. J. Electron. Sci. Technol. Univ. 2008, 37, 301–304. [Google Scholar]
- Duan, R. Video Evoked Emotion Recognition Based on Brain Electrical Signals. Master’s Thesis, Shanghai Jiaotong University, Shanghai, China, 2014. [Google Scholar]
- Valenza, G.; Citi, L.; Lanatá, A.; Scilingo, E.P.; Barbieri, R. Revealing real-time emotional responses: A personalized assessment based on heartbeat dynamics. Sci. Rep. 2014, 4, 4998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valenza, G.; Lanata, A.; Scilingo, E.P. The Role of Nonlinear Dynamics in Affective Valence and Arousal Recognition. IEEE Trans. Affect. Comput. 2012, 3, 237–249. [Google Scholar] [CrossRef]
- Agrafioti, F.; Hatzinakos, D.; Anderson, A.K. ECG Pattern Analysis for Emotion Detection. IEEE Trans. Affect. Comput. 2012, 3, 102–115. [Google Scholar] [CrossRef]
- Guo, H.W.; Huang, Y.S.; Lin, C.H.; Chien, J.C.; Haraikawa, K.; Shieh, J.S. Heart Rate Variability Signal Features for Emotion Recognition by Using Principal Component Analysis and Support Vectors Machine. In Proceedings of the 2016 IEEE 16th International Conference on Bioinformatics and Bioengineering (BIBE), Taichung, Taiwan, 31 October–2 November 2016; pp. 274–277. [Google Scholar]
- Cheng, Z.; Shu, L.; Xie, J.; Chen, C.P. A novel ECG-based real-time detection method of negative emotions in wearable applications. In Proceedings of the International Conference on Security, Pattern Analysis, and Cybernetics, Shenzhen, China, 15–17 December 2017; pp. 296–301. [Google Scholar]
- Xu, Y.; Hübener, I.; Seipp, A.K.; Ohly, S.; David, K. From the lab to the real-world: An investigation on the influence of human movement on Emotion Recognition using physiological signals. In Proceedings of the IEEE International Conference on Pervasive Computing and Communications Workshops, Kona, HI, USA, 13–17 March 2017; pp. 345–350. [Google Scholar]
- Rodriguez, A.; Rey, B.; Vara, M.D.; Wrzesien, M.; Alcaniz, M.; Banos, R.M.; Perez-Lopez, D. A VR-Based Serious Game for Studying Emotional Regulation in Adolescents. IEEE Comput. Graph. Appl. 2015, 35, 65–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreibig, S.D. Autonomic nervous system activity in emotion: A review. Biol. Psychol. 2010, 84, 394–421. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.A.; Coffman, J.D. Beta-adrenergic vasodilator mechanism in the finger. Circ. Res. 1981, 49, 1196–1201. [Google Scholar] [CrossRef] [PubMed]
- Adsett, C.A.; Schottsteadt, W.W.; Wolf, S.G. Changes in coronary blood flow and other hemodynamic indicators induced by stressful interviews. Psychosom. Med. 1962, 24, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Bandler, R.; Shipley, M.T. Columnar organization in the midbrain periaqueductal gray: Modules for emotional expression? Trends Neurosci. 1994, 17, 379–389. [Google Scholar] [CrossRef]
- Bradley, M.M.; Lang, P.J. Measuring emotion: Behavior, feeling and physiology. In Cognitive Neuroscience of Emotion; Lane, R., Nadel, L., Eds.; Oxford University Press: New York, NY, USA, 2000; pp. 242–276. [Google Scholar]
- Davidson, R.J. Affective style and affective disorders: Perspectives from affective neuroscience. Cogn. Emot. 1998, 12, 307–330. [Google Scholar] [CrossRef]
- Dimberg, U.; Thunberg, M. Speech anxiety and rapid emotional reactions to angry and happy facial expressions. Scand. J. Psychol. 2007, 48, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Epstein, S.; Boudreau, L.; Kling, S. Magnitude of the heart rate and electrodermal response as a function of stimulus input, motor output, and their interaction. Psychophysiology 1975, 12, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Blascovich, J.; Mendes, W.B.; Tomaka, J.; Salomon, K.; Seery, M. The robust nature of the biopsychosocial model challenge and threat: A reply to Wrigth and Kirby. Pers. Soc. Psychol. Rev. 2003, 7, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Contrada, R. T-wave amplitude: On the meaning of a psychophysiological index. Biol. Psychol. 1992, 33, 249–258. [Google Scholar] [CrossRef]
- Christie, I.; Friedman, B. Autonomic specificity of discrete emotion and dimensions of affective space: A multivariate approach. Int. J. Psychophysiol. 2004, 51, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Peter, C.; Ebert, E.; Beikirch, H. A wearable multi-sensor system for mobile acquisition of emotion-related physiological data. In Proceedings of the International Conference on Affective Computing and Intelligent Interaction, Beijing, China, 22 October 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 691–698. [Google Scholar]
- Lisetti, C.L.; Nasoz, F. Using Noninvasive Wearable Computers to Recognize Human Emotions from Physiological Signals. EURASIP J. Appl. Signal Process. 2004, 2004, 1672–1687. [Google Scholar] [CrossRef]
- Costa, J.; Adams, A.T.; Jung, M.F.; Guimbretière, F.; Choudhury, T. EmotionCheck: A Wearable Device to Regulate Anxiety through False Heart Rate Feedback. Getmob. Mob. Comput. Commun. 2017, 21, 22–25. [Google Scholar] [CrossRef]
- Wen, W.; Liu, G.; Cheng, N.; Wei, J.; Shangguan, P.; Huang, W. Emotion Recognition Based on Multi-Variant Correlation of Physiological Signals. IEEE Trans. Affect. Comput. 2014, 5, 126–140. [Google Scholar] [CrossRef]
- Monajati, M.; Abbasi, S.H.; Shabaninia, F.; Shamekhi, S. Emotions States Recognition Based on Physiological Parameters by Employing of Fuzzy-Adaptive Resonance Theory. Int. J. Intell. Sci. 2012, 2, 166–176. [Google Scholar] [CrossRef]
- Wu, G.; Liu, G.; Hao, M. The Analysis of Emotion Recognition from GSR Based on PSO. In Proceedings of the International Symposium on Intelligence Information Processing and Trusted Computing, Huanggang, China, 28–29 October 2010; pp. 360–363. [Google Scholar]
- Das, P.; Khasnobish, A.; Tibarewala, D.N. Emotion recognition employing ECG and GSR signals as markers of ANS. In Proceedings of the Advances in Signal Processing, Pune, India, 9–11 June 2016. [Google Scholar]
- Poh, M.Z.; Swenson, N.C.; Picard, R.W. A wearable sensor for unobtrusive, long-term assessment of electrodermal activity. IEEE Trans. Biomed. Eng. 2010, 57, 1243–1252. [Google Scholar] [PubMed]
- Poh, M.Z.; Loddenkemper, T.; Swenson, N.C.; Goyal, S.; Madsen, J.R.; Picard, R.W. Continuous monitoring of electrodermal activity during epileptic seizures using a wearable sensor. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Buenos Aires, Argentina, 31 August–4 September 2010; pp. 4415–4418. [Google Scholar]
- Bloom, L.J.; Trautt, G.M. Finger pulse volume as a measure of anxiety: Further evaluation. Psychophysiology 1977, 14, 541–544. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.A.; McNaughton, N. The Neuropsychology of Anxiety: An Enquiry into the Functions of the Septo-hippocampal System; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Ekman, P.; Levenson, R.W.; Friesen, W.V. Autonomic nervous system activity distinguishes among emotions. Science 1983, 221, 1208–1210. [Google Scholar] [CrossRef] [PubMed]
- Davidson, R.J.; Schwartz, G.E. Patterns of cerebral lateralization during cardiac biofeedback versus the self-regulation of emotion: Sex differences. Psychophysiology 1976, 13, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Cacioppo, J.T.; Berntson, G.G.; Larsen, J.T.; Poehlmann, K.M.; Ito, T.A. The psychophysiology of emotion. In The Handbook of Emotion, 2nd ed.; Lewis, R., Haviland-Jones, J.M., Eds.; Guilford Press: New York, NY, USA, 2000; pp. 173–191. [Google Scholar]
- Eisenberg, N.; Fabes, R.A.; Bustamante, D.; Mathy, R.M.; Miller, P.A.; Lindholm, E. Differentiation of vicariously induced emotional reactions in children. Dev. Psychol. 1988, 24, 237–246. [Google Scholar] [CrossRef]
- Berridge, K.C. Pleasure, pain, desire, and dread: Hidden core processes of emotion. In Well-Being: The Foundations of Hedonic Psychology; Kahneman, D., Diener, E., Schwarz, N., Eds.; Russell Sage Foundation: New York, NY, USA, 1999; pp. 527–559. [Google Scholar]
- Drummond, P.D. Facial flushing during provocation in women. Psychophysiology 1999, 36, 325–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, W. What is an emotion? Mind 1884, 9, 188–205. [Google Scholar] [CrossRef]
- Benarroch, E.E. The central autonomic network: Functional organization, dysfunction, and perspective. Mayo Clin. Proc. 1993, 68, 988–1001. [Google Scholar] [CrossRef]
- Damasio, A.R. Emotion in the perspective of an integrated nervous system. Brain Res. Rev. 1998, 26, 83–86. [Google Scholar] [CrossRef]
- Wong, W.M.; Tan, A.W.; Loo, C.K.; Liew, W.S. PSO optimization of synergetic neural classifier for multichannel emotion recognition. In Proceedings of the 2010 Second World Congress on Nature and Biologically Inspired Computing (NaBIC), Kitakyushu, Japan, 15–17 December 2010; pp. 316–321. [Google Scholar]
- Mirmohamadsadeghi, L.; Yazdani, A.; Vesin, J.M. Using cardio-respiratory signals to recognize emotions elicited by watching music video clips. In Proceedings of the 2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP), Montreal, QC, Canada, 21–23 September 2016; pp. 1–5. [Google Scholar]
- Wu, C.K.; Chung, P.C.; Wang, C.J. Representative Segment-Based Emotion Analysis and Classification with Automatic Respiration Signal Segmentation. IEEE Trans. Affect. Comput. 2012, 3, 482–495. [Google Scholar] [CrossRef]
- Frijda, N.H. Moods, emotion episodes, and emotions. In Handbook of Emotions; Lewis, M., Haviland, J.M., Eds.; Guilford Press: New York, NY, USA, 1993; pp. 381–403. [Google Scholar]
- Barlow, D.H. Disorders of emotion. Psychol. Inq. 1991, 2, 58–71. [Google Scholar] [CrossRef]
- Feldman-Barrett, L. Are emotions natural kinds? Perspect. Psychol. Sci. 2006, 1, 28–58. [Google Scholar] [CrossRef] [PubMed]
- Folkow, B. Perspectives on the integrative functions of the ‘sympathoadrenomedullary system’. Auton. Neurosci. Basic Clin. 2000, 83, 101–115. [Google Scholar] [CrossRef]
- Harris, C.R. Cardiovascular responses of embarrassment and effects of emotional suppression in a social setting. J. Pers. Soc. Psychol. 2001, 81, 886–897. [Google Scholar] [CrossRef] [PubMed]
- Gouizi, K.; Reguig, F.B.; Maaoui, C. Analysis physiological signals for emotion recognition. In Proceedings of the 2011 7th International Workshop on Systems, Signal Processing and their Applications (WOSSPA), Tipaza, Algeria, 9–11 May 2011; pp. 147–150. [Google Scholar]
- Alzoubi, O.; Sidney, K.D.; Calvo, R.A. Detecting Naturalistic Expressions of Nonbasic Affect Using Physiological Signals. IEEE Trans. Affect. Comput. 2012, 3, 298–310. [Google Scholar] [CrossRef]
- Jerritta, S.; Murugappan, M.; Wan, K.; Yaacob, S. Emotion recognition from facial EMG signals using higher order statistics and principal component analysis. J. Chin. Inst. Eng. 2014, 37, 385–394. [Google Scholar] [CrossRef]
- Cheng, B.; Liu, G. Emotion Recognition from Surface EMG Signal Using Wavelet Transform and Neural Network. J. Comput. Appl. 2007, 28, 1363–1366. [Google Scholar]
- Yang, S.; Yang, G. Emotion Recognition of EMG Based on Improved L-M BP Neural Network and SVM. J. Softw. 2011, 6, 1529–1536. [Google Scholar] [CrossRef]
- Murugappan, M. Electromyogram signal based human emotion classification using KNN and LDA. In Proceedings of the IEEE International Conference on System Engineering and Technology, Shah Alam, Malaysia, 27–28 June 2011; pp. 106–110. [Google Scholar]
- Cheng, Y.; Liu, G.Y.; Zhang, H.L. The research of EMG signal in emotion recognition based on TS and SBS algorithm. In Proceedings of the 2010 3rd International Conference on Information Sciences and Interaction Sciences (ICIS), Chengdu, China, 23–25 June 2010; pp. 363–366. [Google Scholar]
- Gong, P.; Ma, H.T.; Wang, Y. Emotion recognition based on the multiple physiological signals. In Proceedings of the IEEE International Conference on Real-time Computing and Robotics (RCAR), Angkor Wat, Cambodia, 6–10 June 2016; pp. 140–143. [Google Scholar]
- Bigirimana, A.; Siddique, N.; Coyle, D.H. A Hybrid ICA-Wavelet Transform for Automated Artefact Removal in EEG-based Emotion Recognition. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Budapest, Hungary, 9–12 October 2016. [Google Scholar]
- Alickovic, E.; Babic, Z. The effect of denoising on classification of ECG signals. In Proceedings of the XXV International Conference on Information, Communication and Automation Technologies, Sarajevo, Bosnia Herzegovina, 29–31 October 2015; pp. 1–6. [Google Scholar]
- Patel, R.; Janawadkar, M.P.; Sengottuvel, S.; Gireesan, K.; Radhakrishnan, T.S. Suppression of Eye-Blink Associated Artifact Using Single Channel EEG Data by Combining Cross-Correlation with Empirical Mode Decomposition. IEEE Sens. J. 2016, 16, 6947–6954. [Google Scholar] [CrossRef]
- Nie, D.; Wang, X.W.; Shi, L.C.; Lu, B.L. EEG-based emotion recognition during watching movies. In Proceedings of the International IEEE/EMBS Conference on Neural Engineering, Cancun, Mexico, 27 April–1 May 2011; pp. 667–670. [Google Scholar]
- Murugappan, M.; Murugappan, S. Human emotion recognition through short time Electroencephalogram (EEG) signals using Fast Fourier Transform (FFT). In Proceedings of the 2013 IEEE 9th International Colloquium on Signal Processing and its Applications (CSPA), Kuala Lumpur, Malaysia, 8–10 March 2013; pp. 289–294. [Google Scholar]
- Chanel, G.; Ansari-Asl, K.; Pun, T. Valence-arousal evaluation using physiological signals in an emotion recall paradigm. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Montreal, QC, Canada, 7–10 October 2007; Volume 37, pp. 2662–2667. [Google Scholar]
- Li, X.; Song, D.; Zhang, P.; Yu, G.; Hou, Y.; Hu, B. Emotion recognition from multi-channel EEG data through Convolutional Recurrent Neural Network. In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, Shenzhen, China, 15–18 December 2016; pp. 352–359. [Google Scholar]
- Zied, G.; Lachiri, Z.; Maaoui, C. Emotion recognition from physiological signals using fusion of wavelet based features. In Proceedings of the International Conference on Modelling, Identification and Control, Sousse, Tunisia, 18–20 December 2015. [Google Scholar]
- Verma, G.K.; Tiwary, U.S. Multimodal fusion framework: A multiresolution approach for emotion classification and recognition from physiological signals. Neuroimage 2013, 102, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Gouizi, K.; Maaoui, C.; Reguig, F.B. Negative emotion detection using EMG signal. In Proceedings of the International Conference on Control, Decision and Information Technologies, Metz, France, 3–5 November 2014; pp. 690–695. [Google Scholar]
- Murugappan, M.; Ramachandran, N.; Sazali, Y. Classification of human emotion from EEG using discrete wavelet transform. J. Biomed. Sci. Eng. 2010, 3, 390–396. [Google Scholar] [CrossRef]
- Yohanes, R.E.J.; Ser, W.; Huang, G.B. Discrete Wavelet Transform coefficients for emotion recognition from EEG signals. In Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 2251–2254. [Google Scholar]
- Zong, C.; Chetouani, M. Hilbert-Huang transform based physiological signals analysis for emotion recognition. In Proceedings of the IEEE International Symposium on Signal Processing and Information Technology, Ajman, UAE, 14–17 December 2010; pp. 334–339. [Google Scholar]
- Liu, W.; Zheng, W.L.; Lu, B.L. Emotion Recognition Using Multimodal Deep Learning. In Proceedings of the International Conference on Neural Information Processing, Kyoto, Japan, 16–21 October 2016. [Google Scholar]
- Zhang, J.; Chen, M.; Hu, S.; Cao, Y.; Kozma, R. PNN for EEG-based Emotion Recognition. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 2319–2323. [Google Scholar]
- Liu, J.; Meng, H.; Nandi, A.; Li, M. Emotion detection from EEG recordings. In Proceedings of the 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Changsha, China, 13–15 August 2016; pp. 1722–1727. [Google Scholar]
- Wang, Y.; Mo, J. Emotion feature selection from physiological signals using tabu search. In Proceedings of the 2013 25th Chinese Control and Decision Conference, Guiyang, China, 25–27 May 2013; pp. 3148–3150. [Google Scholar]
- Liu, Y.H.; Wu, C.T.; Cheng, W.T.; Hsiao, Y.T.; Chen, P.M.; Teng, J.T. Emotion recognition from single-trial EEG based on kernel Fisher’s emotion pattern and imbalanced quasiconformal kernel support vector machine. Sensors 2014, 14, 13361–13388. [Google Scholar] [CrossRef] [PubMed]
- Petrantonakis, P.C.; Hadjileontiadis, L.J. Emotion Recognition from Brain Signals Using Hybrid Adaptive Filtering and Higher Order Crossings Analysis. IEEE Trans. Affect. Comput. 2010, 1, 81–97. [Google Scholar] [CrossRef]
- Paithane, A.N.; Bormane, D.S. Analysis of nonlinear and non-stationary signal to extract the features using Hilbert Huang transform. In Proceedings of the IEEE International Conference on Computational Intelligence and Computing Research, Coimbatore, India, 18–20 December 2014; pp. 1–4. [Google Scholar]
- Mansoorizadeh, M.; Charkari, N.M. Multimodal information fusion application to human emotion recognition from face and speech. Multimed. Tools Appl. 2010, 49, 277–297. [Google Scholar] [CrossRef]
- Shin, D.; Shin, D.; Shin, D. Development of emotion recognition interface using complex EEG/ECG bio-signal for interactive contents. Multimed. Tools Appl. 2017, 76, 11449–11470. [Google Scholar] [CrossRef]
- Sun, B.; Li, L.; Zuo, T.; Chen, Y.; Zhou, G.; Wu, X. Combining Multimodal Features with Hierarchical Classifier Fusion for Emotion Recognition in the Wild. In Proceedings of the 16th International Conference on Multimodal Interaction, Istanbul, Turkey, 12–16 November 2015; pp. 481–486. [Google Scholar]
- Wang, S.; Du, J.; Xu, R. Decision fusion for EEG-based emotion recognition. In Proceedings of the International Conference on Machine Learning and Cybernetics, Guangzhou, China, 12–15 July 2015; pp. 883–889. [Google Scholar]
- Vapnik, V. Estimation of Dependences Based on Empirical Data; Springer: New York, NY, USA, 2006. [Google Scholar]
- Cover, T.M.; Hart, P.E. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Franklin, J. The elements of statistical learning: Data mining, inference and prediction. Publ. Am. Stat. Assoc. 2005, 27, 83–85. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Garcia, H.F.; Alvarez, M.A.; Orozco, A.A. Gaussian process dynamical models for multimodal affect recognition. In Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society, Orlando, FL, USA, 16–20 August 2016; pp. 850–853. [Google Scholar]
- Kim, J.; André, E. Emotion recognition based on physiological changes in music listening. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 30, 2067–2083. [Google Scholar] [CrossRef] [PubMed]
- Kolodyazhniy, V.; Kreibig, S.D.; Gross, J.J.; Roth, W.T.; Wilhelm, F.H. An affective computing approach to physiological emotion specificity: Toward subject-independent and stimulus-independent classification of film-induced emotions. Psychophysiology 2011, 48, 908–922. [Google Scholar] [CrossRef] [PubMed]
- Martinez, H.P.; Bengio, Y.; Yannakakis, G.N. Learning deep physiological models of affect. IEEE Comput. Intell. Mag. 2013, 8, 20–33. [Google Scholar] [CrossRef]
- Salari, S.; Ansarian, A.; Atrianfar, H. Robust emotion classification using neural network models. In Proceedings of the 2018 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), Kerman, Iran, 28 February–2 March 2018; pp. 190–194. [Google Scholar]
- Song, T.; Zheng, W.; Song, P.; Cui, Z. EEG Emotion Recognition Using Dynamical Graph Convolutional Neural Networks. IEEE Trans. Affect. Comput. 2018, 3, 1. [Google Scholar] [CrossRef]
- Zheng, W.L.; Zhu, J.Y.; Peng, Y.; Lu, B.L. EEG-based emotion classification using deep belief networks. In Proceedings of the IEEE International Conference on Multimedia and Expo, Chengdu, China, 14–18 July 2014; pp. 1–6. [Google Scholar]
- Huang, J.; Xu, X.; Zhang, T. Emotion classification using deep neural networks and emotional patches. In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, Kansas City, MO, USA, 13–16 November 2017; pp. 958–962. [Google Scholar]
- Kawde, P.; Verma, G.K. Deep belief network based affect recognition from physiological signals. In Proceedings of the 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON), Mathura, India, 26–28 October 2017; pp. 587–592. [Google Scholar]
- Alhagry, S.; Aly, A.; Reda, A. Emotion Recognition based on EEG using LSTM Recurrent Neural Network. Int. J. Adv. Comput. Sci. Appl. 2017, 8, 355–358. [Google Scholar] [CrossRef]
- Liu, J.; Su, Y.; Liu, Y. Multi-modal Emotion Recognition with Temporal-Band Attention Based on LSTM-RNN. In Advances in Multimedia Information Processing—PCM 2017; Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S., Fan, X., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 10735. [Google Scholar]
- Ali, M.; Mosa, A.H.; Al Machot, F.; Kyamakya, K. A novel EEG-based emotion recognition approach for e-healthcare applications. In Proceedings of the Eighth International Conference on Ubiquitous and Future Networks, Vienna, Austria, 5–8 July 2016; pp. 946–950. [Google Scholar]
- Thammasan, N.; Moriyama, K.; Fukui, K.I.; Numao, M.; Thammasan, N.; Moriyama, K.; Fukui, K.I.; Numao, M. Familiarity effects in EEG-based emotion recognition. Brain Inform. 2016, 4, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Plataniotis, K.N. Affective states classification using EEG and semi-supervised deep learning approaches. In Proceedings of the International Workshop on Multimedia Signal Processing, London, UK, 16–18 October 2017; pp. 1–6. [Google Scholar]
- Soleymani, M.; Lichtenauer, J.; Pun, T.; Pantic, M. A Multimodal Database for Affect Recognition and Implicit Tagging. IEEE Trans. Affect. Comput. 2012, 3, 42–55. [Google Scholar] [CrossRef] [Green Version]
- Koelstra, S.; Patras, I. Fusion of facial expressions and EEG for implicit affective tagging. Image Vis. Comput. 2013, 31, 164–174. [Google Scholar] [CrossRef]
- Ferdinando, H.; Seppänen, T.; Alasaarela, E. Enhancing emotion recognition from ECG Signals using supervised dimensionality reduction. In Proceedings of the ICPRAM, Porto, Portugal, 24–26 February 2017; pp. 112–118. [Google Scholar]
- Wiem, M.B.H.; Lachiri, Z. Emotion recognition system based on physiological signals with Raspberry Pi III implementation. In Proceedings of the International Conference on Frontiers of Signal Processing, Paris, France, 6–8 September 2017; pp. 20–24. [Google Scholar]
- Xu, H.; Plataniotis, K.N. Subject independent affective states classification using EEG signals. In Proceedings of the IEEE Global Conference on Signal and Information Processing, Orlando, FL, USA, 14–16 December 2015; pp. 1312–1316. [Google Scholar]
- Zheng, W.L.; Lu, B.L. A Multimodal Approach to Estimating Vigilance Using EEG and Forehead EOG. arXiv, 2016; arXiv:1611.08492. [Google Scholar]
- Li, H.; Qing, C.; Xu, X.; Zhang, T. A novel DE-PCCM feature for EEG-based emotion recognition. In Proceedings of the International Conference on Security, Pattern Analysis, and Cybernetics, Shenzhen, China, 15–18 December 2017; pp. 389–393. [Google Scholar]
- Song, T.; Zheng, W.; Song, P.; Cui, Z. EEG Emotion Recognition Using Dynamical Graph Convolutional Neural Networks. IEEE Trans. Affect. Comput. 2008. [Google Scholar] [CrossRef]
- Yang, B.; Han, X.; Tang, J. Three class emotions recognition based on deep learning using staked autoencoder. In Proceedings of the International Congress on Image and Signal Processing, Biomedical Engineering and Informatics, Beijing, China, 13 October 2018. [Google Scholar]
- Zheng, W. Multichannel EEG-Based Emotion Recognition via Group Sparse Canonical Correlation Analysis. IEEE Trans. Cogn. Dev. Syst. 2017, 9, 281–290. [Google Scholar] [CrossRef]
- Zhang, L.; Walter, S.; Ma, X.; Werner, P.; Al-Hamadi, A.; Traue, H.C.; Gruss, S. “BioVid Emo DB”: A multimodal database for emotion analyses validated by subjective ratings. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 6–9 December 2016. [Google Scholar]
- Samara, A.; Menezes, M.L.R.; Galway, L. Feature extraction for emotion recognition and modelling using neurophysiological data. In Proceedings of the International Conference on Ubiquitous Computing and Communications and 2016 International Symposium on Cyberspace and Security, Xi’an, China, 23–25 October 2017; pp. 138–144. [Google Scholar]
- Basu, S.; Jana, N.; Bag, A.; Mahadevappa, M.; Mukherjee, J.; Kumar, S.; Guha, R. Emotion recognition based on physiological signals using valence-arousal model. In Proceedings of the Third International Conference on Image Information Processing, Waknaghat, India, 21–24 December 2015; pp. 50–55. [Google Scholar]
- Ray, R.D. Emotion elicitation using films. In Handbook of Emotion Elicitation and Assessment; Oxford University Press: Oxford, UK, 2007; p. 9. [Google Scholar]
- Mühl, C.; Brouwer, A.M.; Van Wouwe, N.; van den Broek, E.; Nijboer, F.; Heylen, D.K. Modality-specific affective responses and their implications for affective BCI. In Proceedings of the Fifth International Brain-Computer Interface Conference, Asilomar, CA, USA, 22–24 September 2011. [Google Scholar]
- Ardizzi, M.; Sestito, M.; Martini, F.; Umiltà, M.A.; Ravera, R.; Gallese, V. When age matters: Differences in facial mimicry and autonomic responses to peers’ emotions in teenagers and adults. PLoS ONE 2014, 9, e110763. [Google Scholar] [CrossRef] [PubMed]
- Iacoboni, M. Imitation, Empathy, and Mirror Neurons. Annu. Rev. Psychol. 2009, 60, 653–670. [Google Scholar] [CrossRef] [PubMed]
- Ardizzi, M.; Martini, F.; Umiltà, M.A.; Sestitoet, M.; Ravera, R.; Gallese, V. When Early Experiences Build a Wall to Others’ Emotions: An Electrophysiological and Autonomic Study. PLoS ONE 2013, 8, e61004. [Google Scholar] [CrossRef] [PubMed]
- Ardizzi, M.; Umiltà, M.A.; Evangelista, V.; Liscia, A.D.; Ravera, R.; Gallese, V. Less Empathic and More Reactive: The Different Impact of Childhood Maltreatment on Facial Mimicry and Vagal Regulation. PLoS ONE 2016, 11, e0163853. [Google Scholar] [CrossRef] [PubMed]
- Matzke, B.; Herpertz, S.C.; Berger, C.; Fleischer, M.; Domes, G. Facial Reactions during Emotion Recognition in Borderline Personality Disorder: A Facial Electromyography Study. Psychopathology 2014, 47, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Zantinge, G.; Van, R.S.; Stockmann, L.; Swaab, H. Concordance between physiological arousal and emotion expression during fear in young children with autism spectrum disorders. Autism Int. J. Res. Pract. 2018. [Google Scholar] [CrossRef] [PubMed]
Anger | Anxiety | Embarrassment | Fear | Amusement | Happiness | Joy | |
---|---|---|---|---|---|---|---|
Cardiovascular | |||||||
HR | ↑ | ↑ | ↑ | ↑ | ↑↓ | ↑ | ↑ |
HRV | ↓ | ↓ | ↓ | ↓ | ↑ | ↓ | ↑ |
LF | ↑ | (--) | (--) | ||||
LF/HF | ↑ | (--) | |||||
PWA | ↑ | ||||||
PEP | ↓ | ↓ | ↓ | ↑ | ↑ | ↑↓ | |
SV | ↑↓ | (--) | ↓ | (--) | ↓ | ||
CO | ↑↓ | ↑ | (--) | ↑ | ↓ | (--) | (--) |
SBP | ↑ | ↑ | ↑ | ↑ | ↑-- | ↑ | ↑ |
DBP | ↑ | ↑ | ↑ | ↑ | ↑-- | ↑ | (--) |
MAP | ↑ | ↑ | ↑-- | ↑ | |||
TPR | ↑ | ↓ | ↑ | ↑ | (--) | ||
FPA | ↓ | ↓ | ↓ | ↓ | ↑↓ | ||
FPTT | ↓ | ↓ | ↓ | ↑ | |||
EPTT | ↓ | ↓ | ↑ | ||||
FT | ↓ | ↓ | ↓ | (--) | ↑ | ||
Electrodermal | |||||||
SCR | ↑ | ↑ | ↑ | ↑ | |||
nSRR | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | |
SCL | ↑ | ↑ | ↑ | ↑ | ↑ | ↑-- | (--) |
Respiratory | |||||||
RR | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | |
Ti | ↓ | ↓ | ↓-- | ↓ | ↓ | ||
Te | ↓ | ↓ | ↓ | ↓ | |||
Pi | ↑ | ↑ | ↓ | ||||
Ti/Ttot | ↑ | ↓ | |||||
Vt | ↑↓ | ↓ | ↑↓ | ↑↓ | ↑↓ | ||
Vi/Ti | ↑ | ||||||
Electroencephalography | |||||||
PSD (α wave ) | ↑ | ↑ | ↓ | ↑ | ↑ | ↑ | |
PSD (β wave) | ↓ | ↑ | |||||
PSD (γ wave) | ↓ | ↑ | ↑ | ↑ | |||
DE (average) | ↑ | (--) | ↓ | ↑ | ↑ | ||
DASM (average) | (--) | ↑ | ↓ | ↓ | ↓ | ||
RASM (average) | ↑ | ↑ | ↓ |
True Situation | Prediction | |
---|---|---|
Positive | Negative | |
Positive | true positive (TP) | false negative (FN) |
Negative | false positive (FP) | true negative (TN) |
No. | Author | Stimulus | Subjects | Subject Dependency | Emotions | Signals | Features | Classifiers | Recognition Rates |
---|---|---|---|---|---|---|---|---|---|
1 | Petrantonakis P C, et al. [106] | IAPS | 16 (9 males, 7 females) | No | happiness, surprise, anger, fear, disgust, sadness | EEG | FD, HOC | KNN, QDA, MD, SVM | 85.17% |
2 | Samara A, et al. [141] | videos | 32 | Yes | arousal, valence | EEG | statistical features, PSD, HOC | SVM | Bipartition: 79.83% Tripartition: 60.43% |
3 | Jianhai Zhang et al. [102] | videos | 32 | Yes | arousal, valence | EEG | power | PNN, SVM | 81.76% for PNN 82.00% for SVM |
4 | Ping Gong et al. [87] | music | - | Yes | joy, anger, sadness, pleasure | ECG, EMG, RSP, SC | statistical features Wavelet, EEMD, nonlinear | c4.5 decision tree | 92% |
5 | Gyanendra Kumar Verma et al. [96] | videos | 32 | Yes | terrible, love, hate, sentimental, lovely, happy, fun, shock, cheerful, depressing, exciting, melancholy, mellow | EEG+8 peripheral signals | different Powers, STD and SE of detail and approximation coefficients. | SVM, MLP, KNN, MMC | EEG only:81% mixed with peripheral signals: 78% |
6 | Vitaliy Kolodyazhniy et al. [118] | film clips | 34 (25 males, 19 females) | Both | fear, sadness, neutral | ECG, GSR, RSP, T, EMG, Capnography | HR, RSA, PEP, SBP, SCL, SRR, RR, Vt, pCO2, FT, ACT, SM, CS, ZM | KNN, MLP, QDA, LDA, RBNF | subject dependent:81.90% subject independent:78.9% |
7 | Dongmin Shin et al. [109] | videos | 30 | Yes | amusement, fear, sadness, joy, anger, and disgust | EEG, ECG | relative power, LF/HF | BN | 98.06% |
8 | Foteini Agrafioti et al. [36] | IAPS and video game | 44 | No | valence, arousal | ECG | BEMD:Instantaneous Frequency, Local Oscillation | LDA | arousal: Bipartition76.19% C.36% valence: from 52% to 89% |
9 | Wanhui Wen et al. [55] | videos | - | No | amusement, grief, anger, fear, baseline | OXY, GSR, ECG | 155 HR features and 43 GSR and first deviation GSR features | RF | 74%,(leave-one-out) LOO |
10 | Jonghwa Kim et al. [117] | music | 3 | Both | valence, arousal | ECG, EMG, RSP, SC | 110 features. | pLDA | subject dependent:95% subject independent:77% |
11 | Cong Zong et al. [100] | music | - | Yes | joy, anger, sadness and pleasure | ECG, EMG, SC, RSP | HHT:instantaneous frequency, weighted mean instantaneous frequency | SVM | 76% |
12 | Gaetano Valenza et al. [35] | IAPS | 35 | No | 5 level valence 5 level arousal | ECG, EDR, RSP | 89 standard features, 36 nonlinear methods | QDA | >90% |
13 | Wee Ming Wong et al. [72] | music | - | Yes | joy, anger, sadness, pleasure | ECG, EMG, SC, RSP | 32 features: mean, STD, breathing rateand amplitude, heartbeat, etc. | PSO of synergetic neural classifer (PSO-SNC) | SBS:86% SFS:86% ANOVA:81% |
14 | Leila Mirmohamadsadeghi et, al. [73] | videos | 32 | Yes | valence, arousal | EMG, RSP | slope of the phase difference of the RSA and the respiration | SVM | 74% for valence, 74% for arousal and 76% for liking. |
15 | Chi-Keng Wu et al. [74] | flims clips | 33 | Yes | love, sadness, joy, anger, fear | RSP | EES | KNN5 | 88% |
16 | Xiang Li et al. [94] | videos | 32 | Yes | valence, arousal | EEG | CWT, CNN | LSTM | 72.06% for valence, 74.12 for arousal |
17 | Zied Guendil et al. [95] | music | - | Yes | joy, anger, sadness, pleasure | EMG, RESP, ECG, SC | CWT | SVM | 95% |
18 | Yuan-Pin Lin et al. [29] | music | 26 (16 males,10 females) | No | joy, anger, sadness, pleasure | EEG | DASM, PSD, RASM | MLP, SVM | 82.29% |
19 | Gaetano Valenza et al. [34] | IAPS | - | No | valence, arousal | ECG | spectral, HOS | SVM | 79.15% for valence, 83.55% for arousal |
20 | Bo Cheng et al. [83] | - | - | Yes | joy, anger, sadnes, pleasure | EMG | DWT | BP | 75% |
21 | Saikat Basu et al. [142] | IAPS | 30 | Yes | valence, arousal (HVHA, HVLA, LVHA, LVLA) | GSR, HR, RSP, SKT | mean, covariance matrix | LDA, QDA | 98% for HVHA, 96% for HVLA, 93% for LVHA, 97% for LVLA |
22 | ingxin Liu et al. [103] | videos | 32 | Yes | valence, arousal | EEG | statistical features, PSD, HOC, Hjorth, FD, NSI, DWT, DA, DS, MSCE | KNN5, RF | 69.9% for valence, 71.2% for arousal |
23 | Hernan F. Garcia et al. [116] | videos | 32 | Yes | valence, arousal | EEG, EMG, EOG, GSR, RSP, T, BVP | Gaussian process latent variable models | SVM | 88.33% for 3 level valence, 90.56% for 3 level arousal |
24 | Han-Wen Guo et al. [37] | movie clips | 25 | Yes | positive, negative | ECG | Mean RRI, CVRR, SDRR, SDSD, LF, HF, LF/HF, Kurtosis, Kurtosis, entropy | SVM | 71.40% |
25 | Mahdis Monajati et al. [56] | - | 13 (6 males, 7 females) | Yes | negative, neutral | GSR, HR, RSP | GSR-dif = (GSR-max) − (GSR-base), mean-HR, mean-RR | Fuzzy Adaptive Resonance Theory | 94% |
26 | Lan Z et al. [22] | IADS | 5 | Yes | positive, negative | EEG | FD, five statistical features, HOC, power | SVM | 73.10% |
27 | Zheng W L et al. [25] | videos | 47 | Yes | valence, arousal (HAHV HALV LAHV LALV) | EEG | PSD, DE, DASM, DASR, DCAU | G extreme Learning Machine | 69.67% in DEAP 91.07% in SEED |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, L.; Xie, J.; Yang, M.; Li, Z.; Li, Z.; Liao, D.; Xu, X.; Yang, X. A Review of Emotion Recognition Using Physiological Signals. Sensors 2018, 18, 2074. https://doi.org/10.3390/s18072074
Shu L, Xie J, Yang M, Li Z, Li Z, Liao D, Xu X, Yang X. A Review of Emotion Recognition Using Physiological Signals. Sensors. 2018; 18(7):2074. https://doi.org/10.3390/s18072074
Chicago/Turabian StyleShu, Lin, Jinyan Xie, Mingyue Yang, Ziyi Li, Zhenqi Li, Dan Liao, Xiangmin Xu, and Xinyi Yang. 2018. "A Review of Emotion Recognition Using Physiological Signals" Sensors 18, no. 7: 2074. https://doi.org/10.3390/s18072074
APA StyleShu, L., Xie, J., Yang, M., Li, Z., Li, Z., Liao, D., Xu, X., & Yang, X. (2018). A Review of Emotion Recognition Using Physiological Signals. Sensors, 18(7), 2074. https://doi.org/10.3390/s18072074