A Novel Friendly Jamming Scheme in Industrial Crowdsensing Networks against Eavesdropping Attack
<p>Network model.</p> "> Figure 2
<p>Friendly Jammers with Directional Antennas.</p> "> Figure 3
<p>Geometrical relationship of the friendly jammers and the eavesdropper.</p> "> Figure 4
<p>Geometrical relationship of friendly jammers (three jammers are shown).</p> "> Figure 5
<p><math display="inline"><semantics> <msub> <mi mathvariant="double-struck">P</mi> <mi>T</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi mathvariant="double-struck">P</mi> <mi>E</mi> </msub> </semantics></math> with DFJ scheme and OFJ scheme versus NFJ scheme when <math display="inline"><semantics> <mrow> <mo>α</mo> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math> and <span class="html-italic">M</span> varies from 1 to 10. (<b>a</b>) Probability of successful transmission <math display="inline"><semantics> <msub> <mi mathvariant="double-struck">P</mi> <mi>T</mi> </msub> </semantics></math>; (<b>b</b>) Probability of eavesdropping attack <math display="inline"><semantics> <msub> <mi mathvariant="double-struck">P</mi> <mi>E</mi> </msub> </semantics></math>.</p> "> Figure 6
<p><math display="inline"><semantics> <msub> <mi mathvariant="double-struck">P</mi> <mi>T</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi mathvariant="double-struck">P</mi> <mi>E</mi> </msub> </semantics></math> with the DFJ scheme and the OFJ scheme versus the NFJ scheme when <math display="inline"><semantics> <mrow> <mo>α</mo> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math> and <span class="html-italic">N</span> varies from 1 to 16. (<b>a</b>) Probability of successful transmission <math display="inline"><semantics> <msub> <mi mathvariant="double-struck">P</mi> <mi>T</mi> </msub> </semantics></math>; (<b>b</b>) Probability of eavesdropping attack <math display="inline"><semantics> <msub> <mi mathvariant="double-struck">P</mi> <mi>E</mi> </msub> </semantics></math>.</p> "> Figure 7
<p><math display="inline"><semantics> <msub> <mi mathvariant="double-struck">P</mi> <mi>T</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi mathvariant="double-struck">P</mi> <mi>E</mi> </msub> </semantics></math> with DFJ scheme and OFJ scheme versus NFJ scheme when <math display="inline"><semantics> <mrow> <mo>α</mo> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math>, SINR threshold <span class="html-italic">T</span> and <math display="inline"><semantics> <mo>β</mo> </semantics></math> varies from <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>15</mn> <mi>dB</mi> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>5</mn> <mi>dB</mi> </mrow> </semantics></math>. (<b>a</b>) Probability of successful transmission <math display="inline"><semantics> <msub> <mi mathvariant="double-struck">P</mi> <mi>T</mi> </msub> </semantics></math>; (<b>b</b>) Probability of eavesdropping attacks <math display="inline"><semantics> <msub> <mi mathvariant="double-struck">P</mi> <mi>E</mi> </msub> </semantics></math>.</p> "> Figure 8
<p>Probability of eavesdropping attacks <math display="inline"><semantics> <msub> <mi mathvariant="double-struck">P</mi> <mi>E</mi> </msub> </semantics></math> with DFJ scheme and OFJ scheme versus NFJ scheme when <math display="inline"><semantics> <mrow> <mo>α</mo> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> </mrow> </semantics></math> with distance D ranging from 2 to 20. (<b>a</b>) <math display="inline"><semantics> <mrow> <mo>α</mo> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mo>α</mo> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>.</p> "> Figure 9
<p>Eavesdropper inside of the network.</p> "> Figure 10
<p>Impact of friendly jammers on other networks.</p> ">
Abstract
:1. Introduction
- We propose friendly jamming schemes (DFJ and OFJ) to protect confidential communications from eavesdropping attacks.
- We establish a theoretical model to analyze the probability of eavesdropping attacks and the probability of successful transmission to evaluate the effectiveness of our proposed scheme.
- We conduct extensive simulations to verify the accuracy of our theoretic model. The results also show that using jammers in crowdsensing networks can effectively reduce the eavesdropping risk while having no significant influence on legitimate communications.
2. System Models
2.1. Network Model
2.2. Antennas
3. Impacts of Jamming Schemes on Legitimate Transmission
3.1. Impact of NFJ Scheme
3.2. Impact of OFJ Scheme
3.3. Impact of DFJ Scheme
4. Analysis on Probability of Eavesdropping Attacks
4.1. Impact of NFJ Scheme
4.2. Impact of OFJ Scheme
4.3. Impact of DFJ Scheme
5. Results
6. Discussions
6.1. Impact on the Eavesdropper Inside of Network
6.2. Impact on Legitimate Transmissions in Other Networks
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Yang, G.; He, S.; Shi, Z.; Chen, J. Promoting Cooperation by the Social Incentive Mechanism in Mobile Crowdsensing. IEEE Commun. Mag. 2017, 55, 86–92. [Google Scholar] [CrossRef]
- Han, G.; Liu, L.; Chan, S.; Yu, R.; Yang, Y. HySense: A hybrid mobile crowdsensing framework for sensing opportunities compensation under dynamic coverage constraint. IEEE Commun. Mag. 2017, 55, 93–99. [Google Scholar] [CrossRef]
- Datta, S.K.; da Costa, R.P.F.; Bonnet, C.; Hrri, J. oneM2M Architecture Based Iot Framework for Mobile Crowd Sensing in Smart Cities. In Proceedings of the 2016 European Conference on Networks and Communications (EuCNC), Athens, Greece, 27–30 June 2016. [Google Scholar]
- Pilloni, V. How Data Will Transform Industrial Processes: Crowdsensing, Crowdsourcing and Big Data as Pillars of Industry 4.0. Future Intern. 2018, 10, 24. [Google Scholar] [CrossRef]
- Shu, L.; Chen, Y.; Huo, Z.; Bergmann, N.; Wang, L. When Mobile Crowd Sensing Meets Traditional Industry. IEEE Access 2017, 5, 15300–15307. [Google Scholar] [CrossRef]
- Li, T.; Jung, T.; Qiu, Z.; Li, H.; Cao, L.; Wang, Y. Scalable Privacy-Preserving Participant Selection for Mobile Crowdsensing Systems: Participant Grouping and Secure Group Bidding. IEEE Trans. Netw. Sci. Eng. 2018. [Google Scholar] [CrossRef]
- Ma, L.; Liu, X.; Pei, Q.; Xiang, Y. Privacy-Preserving Reputation Management for Edge Computing Enhanced Mobile Crowdsensing. IEEE Trans. Serv. Comput. 2018. [Google Scholar] [CrossRef]
- Choo, K.; Gritzalis, S.; Park, J.H. Cryptographic Solutions for Industrial Internet-of-Things: Research Challenges and Opportunities. IEEE Trans. Ind. Inform. 2018. [Google Scholar] [CrossRef]
- Zhang, N.; Cheng, N.; Lu, N.; Zhang, X.; Mark, J.W.; Shen, X. Partner Selection and Incentive Mechanism for Physical Layer Security. IEEE Trans. Wirel. Commun. 2015, 14, 4265–4276. [Google Scholar] [CrossRef]
- Hassanieh, H.; Wang, J.; Katabi, D.; Kohno, T. Securing RFIDs by Randomizing the Modulation and Channel. In Proceedings of the 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 15), Oakland, CA, USA, 4–6 May 2015. [Google Scholar]
- Zou, Y.; Zhu, J.; Yang, L.; Liang, Y.; Yao, Y. Securing physical-layer communications for cognitive radio networks. IEEE Commun. Mag. 2015, 53, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Sun, Z.; Piao, S.; Zhu, B.; Ren, K. Wireless Physical-Layer Identification: Modeling and Validation. IEEE Trans. Inform. Forensics Secur. 2016, 11, 2091–2106. [Google Scholar] [Green Version]
- Mucchi, L.; Ronga, L.; Zhou, X.; Huang, K.; Chen, Y.; Wang, R. A New Metric for Measuring the Security of an Environment: The Secrecy Pressure. IEEE Trans. Wirel. Commun. 2017, 16, 3416–3430. [Google Scholar] [CrossRef]
- Kim, Y.S.; Tague, P.; Lee, H.; Kim, H. A Jamming Approach to Enhance Enterprise Wi-Fi Secrecy through Spatial Access Control. Wirel. Netw. 2015, 21, 2631–2647. [Google Scholar] [CrossRef]
- Vilela, J.P.; Bloch, M.; Barros, J.; McLaughlin, S.W. Wireless Secrecy Regions with Friendly Jamming. IEEE Trans. Inform. Forensics Secur. 2011, 6, 256–266. [Google Scholar] [CrossRef]
- Hu, J.; Yan, S.; Shu, F.; Wang, J.; Li, J.; Zhang, Y. Artificial-Noise-Aided Secure Transmission with Directional Modulation Based on Random Frequency Diverse Arrays. IEEE Access 2017, 5, 1658–1667. [Google Scholar] [CrossRef]
- Zhang, X.; McKay, M.R.; Zhou, X.; Heath, R.W. Artificial-Noise-Aided Secure Multi-Antenna Transmission with Limited Feedback. IEEE Trans. Wirel. Commun. 2015, 14, 2742–2754. [Google Scholar] [CrossRef]
- Zheng, T.X.; Wang, H.M. Optimal Power Allocation for Artificial Noise under Imperfect CSI Against Spatially Random Eavesdroppers. IEEE Trans. Veh. Technol. 2016, 65, 1658–1667. [Google Scholar] [CrossRef]
- Adams, M.; Bhargava, V.K. Using friendly jamming to improve route security and quality in ad hoc networks. In Proceedings of the 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), Windsor, ON, Canada, 30 April–3 May 2017; pp. 1–6. [Google Scholar]
- Dai, H.N.; Wang, Q.; Li, D.; Wong, R.C.W. On Eavesdropping Attacks in Wireless Sensor Networks with Directional Antennas. Int. J. Distrib. Sens. Netw. 2013, 9, 760834. [Google Scholar] [CrossRef]
- Kim, M.; Hwang, E.; Kim, J. Analysis of eavesdropping attack in mmWave-based WPANs with directional antennas. Wirel. Netw. 2017, 23, 59–74. [Google Scholar] [CrossRef]
- MacDougall, J.A.; Buchholz, R.H. Cyclic Polygons with Rational Sides and Area. J. Number Theory 2008, 128, 17–48. [Google Scholar]
- Sankararaman, S.; Abu-Affash, K.; Efrat, A.; Eriksson-Bique, S.D.; Polishchuk, V.; Ramasubramanian, S.; Segal, M. Optimization Schemes for Protective Jamming. In Proceedings of the ACM MOBIHOC, Hilton Head Island, SC, USA, 11–14 June 2012. [Google Scholar]
- Singh, S.; Kulkarni, M.N.; Ghosh, A.; Andrews, J.G. Tractable Model for Rate in Self-Backhauled Millimeter Wave Cellular Networks. IEEE J. Sel. Areas Commun. 2015, 33, 2196–2211. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Dai, H.; Zheng, Z.; Imran, M.; Vasilakos, A. On Connectivity of Wireless Sensor Networks with Directional Antennas. Sensors 2017, 17, 134. [Google Scholar] [CrossRef] [PubMed]
- Mathai, A. An Introduction to Geometrical Probability Distributional Aspects with Applications; Gordon and Breach: Philadelphia, PA, USA, 1999. [Google Scholar]
- Li, X.; Dai, H.N.; Wang, H.; Xiao, H. On Performance Analysis of Protective Jamming Schemes in Wireless Sensor Networks. Sensors 2016, 16, 1987. [Google Scholar] [CrossRef] [PubMed]
- Khalid, Z.; Durrani, S. Distance distributions in regular polygons. IEEE Trans. Veh. Technol. 2013, 62, 2363–2368. [Google Scholar] [CrossRef]
- Chen, L.; Wu, J.; Dai, H.N.; Huang, X. BRAINS: Joint Bandwidth-Relay Allocation in Multi-Homing Cooperative D2D Networks. IEEE Trans. Veh. Technol. 2018. [Google Scholar] [CrossRef]
- Berger, D.S.; Gringoli, F.; Facchi, N.; Martinovic, I.; Schmitt, J.B. Friendly jamming on access points: Analysis and real-world measurements. IEEE Trans. Wirel. Commun. 2016, 15, 6189–6202. [Google Scholar] [CrossRef]
- Vo-Huu, T.D.; Vo-Huu, T.D.; Noubir, G. Interleaving Jamming in Wi-Fi Networks. In Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks, Darmstadt, Germany, 18–20 July 2016. [Google Scholar]
Notation | Description |
---|---|
R | Radius of protected circular legitimate communication area |
D | Distance between eavesdropper to the boundary of protected circular area |
Transmission power of legitimate user and friendly jammer | |
Distance between the legitimate transmitter and eavesdropper/legitimate receiver | |
h | Fading random variable |
Path loss exponent | |
Point process and intensity of legitimate users | |
SINR threshold for a successful legitimate transmission/eavesdropping attack | |
M | Expectation of the number of legitimate transmitters |
N | Number of friendly jammers |
Expectation of random variable X | |
Antenna gain of main lobe, antenna gain of side lobe | |
Main lobe beamwidth of the directional antenna | |
Antenna gain of the legitimate transmitters/eavesdropper/friendly jammers | |
Probability of eavesdropping attacks | |
Probability of eavesdropping a certain transmitter successfully | |
Probability of successful transmission | |
Cumulative interference from legitimate transmitters/friendly jammers on the receiver | |
Cumulative interference from legitimate transmitters/friendly jammers on the eavesdropper | |
Noise power of Gaussian Addictive White Noise |
Parameters | Values |
---|---|
Radius of protected communication area R | 20 |
Transmission power of legitimate users | 20 dBm |
Transmission power of friendly jammers | 20 dBm |
Noise power | −90 dBm |
Antenna gain of main lobe | 10 dBi |
Main lobe beamwidth |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wang, Q.; Dai, H.-N.; Wang, H. A Novel Friendly Jamming Scheme in Industrial Crowdsensing Networks against Eavesdropping Attack. Sensors 2018, 18, 1938. https://doi.org/10.3390/s18061938
Li X, Wang Q, Dai H-N, Wang H. A Novel Friendly Jamming Scheme in Industrial Crowdsensing Networks against Eavesdropping Attack. Sensors. 2018; 18(6):1938. https://doi.org/10.3390/s18061938
Chicago/Turabian StyleLi, Xuran, Qiu Wang, Hong-Ning Dai, and Hao Wang. 2018. "A Novel Friendly Jamming Scheme in Industrial Crowdsensing Networks against Eavesdropping Attack" Sensors 18, no. 6: 1938. https://doi.org/10.3390/s18061938
APA StyleLi, X., Wang, Q., Dai, H.-N., & Wang, H. (2018). A Novel Friendly Jamming Scheme in Industrial Crowdsensing Networks against Eavesdropping Attack. Sensors, 18(6), 1938. https://doi.org/10.3390/s18061938