Monitoring Highway Stability in Permafrost Regions with X-band Temporary Scatterers Stacking InSAR
<p>(<b>a</b>) The location of study area in China, the highway and the coverage of SAR image; (<b>b</b>,<b>c</b>) photos on site.</p> "> Figure 2
<p>The flowchart of temporary scatterers stacking InSAR method.</p> "> Figure 3
<p>The comparison of interferograms after removing the topographic effect with (<b>a</b>) SRTM DEM; (<b>b</b>) Reference 3D DEM. The red line denotes the highway (based on SAR pixel coordinates).</p> "> Figure 4
<p>The daily average ground temperature in 2015 at the Qinghai weather station.</p> "> Figure 5
<p>Accumulated subsidence map from stacking InSAR and the location of the highway, PP’, P1–P7.</p> "> Figure 6
<p>(<b>a</b>) The detailed subsidence distribution on region A; (<b>b</b>) High resolution optical satellite image from Google Earth; (<b>c</b>) Photos on-site from Google Earth.</p> "> Figure 7
<p>(<b>a</b>) The detailed subsidence distribution on region B; (<b>b</b>) High resolution optical satellite image from Google Earth; (<b>c</b>) Photos on-site from Google Earth.</p> "> Figure 8
<p>Subsidence profile along the highway, from point P to point P’ in <a href="#sensors-18-01876-f005" class="html-fig">Figure 5</a>.</p> "> Figure 9
<p>The time-series accumulated subsidence at point P1 to P7 with ground temperature data.</p> "> Figure 10
<p>The temporal and perpendicular baselines of all the TSX interferometric pairs and their coherence (horizontal axis: the date of acquisition, vertical axis: the perpendicular baseline).</p> "> Figure 11
<p>Coherence map of some interferometric pairs, imaginary line denote the G214 highway, (based on SAR pixel coordinate).</p> ">
Abstract
:1. Introduction
2. Study Area and Datasets
3. Methodology
3.1. Temporary Scatterers Stacking InSAR Method
3.2. The Feasibility of TSS-Insar Method in This Case
4. Results and Analysis
5. Discussion
5.1. Time Series Subsidence with Ground Temperature
5.2. Possibility of Other Time Series Methods
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhou, Y.; Guo, D.; Qiu, G. Permafrost in China; Science Press: Beijing, China, 2000. [Google Scholar]
- Zhao, H.; Liu, J.; Cui, J. Perception and Evaluation for Settlement Monitoring Method of Highspeed Railway Subgrade. Subgrade Eng. 2001, 6, 15–17. [Google Scholar]
- Wang, X.; Hu, Y.; Bo, L. Review of Deformation Monitoring Research Status. Sci. Surv. Mapp. 2006, 31, 130–132. [Google Scholar]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef] [Green Version]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, Z.; Ding, X.; Jung, H.-S.; Feng, G.; Lee, C.-W. Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin. Remote Sens. Environ. 2012, 117, 429–439. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Li, Z.; Fielding, E.J.; Cross, P. Integration of InSAR time-series analysis and water-vapor correction for mapping postseismic motion after the 2003 Bam (Iran) earthquake. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3220–3230. [Google Scholar]
- Yu, B.; Liu, G.; Zhang, R.; Jia, H.; Li, T.; Wang, X.; Dai, K.; Ma, D. Monitoring subsidence rates along road network by persistent scatterer SAR interferometry with high-resolution TerraSAR-X imagery. J. Mod. Transp. 2013, 21, 236–246. [Google Scholar] [CrossRef] [Green Version]
- Ge, D.; Wang, Y.; Zhang, L.; Xia, Y.; Wang, Y.; Guo, X. Using Permanent Scatterer InSAR to Monitor Land Subsidence Along High Speed Railway-the First Experiment in China. Available online: https://www.semanticscholar.org/paper/Using-Permanent-Scatterer-Insar-to-Monitor-Land-the-Ge-Wang/10a42acd7c935ee9845b5437a3f4421565284ace?tab=citations (accessed on 7 June 2018).
- Dai, K.; Liu, G.; Li, Z.; Li, T.; Yu, B.; Wang, X.; Singleton, A. Extracting Vertical Displacement Rates in Shanghai (China) with Multi-Platform SAR Images. Remote Sens. 2015, 7, 9542–9562. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Liu, G.; Li, Z.; Zhang, G.; Lin, H.; Yu, B.; Wang, X. A Hierarchical Approach to Persistent Scatterer Network Construction and Deformation Time Series Estimation. Remote Sens. 2014, 7, 211–228. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Tomás, R.; Li, Z.; Motagh, M.; Li, T.; Hu, L.; Gong, H.; Li, X.; Yu, J.; Gong, X. Imaging Land Subsidence Induced by Groundwater Extraction in Beijing (China) Using Satellite Radar Interferometry. Remote Sens. 2016, 8, 468. [Google Scholar] [CrossRef]
- Liu, G.; Luo, X.; Chen, Q.; Huang, D.; Ding, X. Detecting Land Subsidence in Shanghai by PS-Networking SAR Interferometry. Sensors 2008, 8, 4725–4741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Zhou, L.; Yao, C.; Hu, J. Surface Subsidence Analysis by Multi-Temporal InSAR and GRACE: A Case Study in Beijing. Sensors 2016, 16, E1495. [Google Scholar] [CrossRef] [PubMed]
- Dai, K.; Li, Z.; Tomás, R.; Liu, G.; Yu, B.; Wang, X.; Cheng, H.; Chen, J.; Stockamp, J. Monitoring activity at the Daguangbao mega-landslide (China) using Sentinel-1 TOPS time series interferometry. Remote Sens. Environ. 2016, 186, 501–513. [Google Scholar] [CrossRef]
- Tomas, R.; Li, Z.; Liu, P.; Singleton, A.; Hoey, T.; Cheng, X. Spatiotemporal characteristics of the Huangtupo landslide in the Three Gorges region (China) constrained by radar interferometry. Geophys. J. Int. 2014, 197, 213–232. [Google Scholar] [CrossRef] [Green Version]
- Qu, T.; Lu, P.; Liu, C.; Wu, H.; Shao, X.; Wan, H.; Li, N.; Li, R. Hybrid-SAR Technique: Joint Analysis Using Phase-Based and Amplitude-Based Methods for the Xishancun Giant Landslide Monitoring. Remote Sens. 2016, 8, 874. [Google Scholar] [CrossRef]
- Sun, Q.; Hu, J.; Zhang, L.; Ding, X. Towards Slow-Moving Landslide Monitoring by Integrating Multi-Sensor InSAR Time Series Datasets: The Zhouqu Case Study, China. Remote Sens. 2016, 8, 908. [Google Scholar] [CrossRef]
- Herrera, G.; Notti, D.; García-Davalillo, J.C.; Mora, O.; Cooksley, G.; Sánchez, M.; Arnaud, A.; Crosetto, M. Analysis with C- and X-band satellite SAR data of the Portalet landslide area. Landslides 2010, 8, 195–206. [Google Scholar] [CrossRef]
- Bianchini, S.; Raspini, F.; Ciampalini, A.; Lagomarsino, D.; Bianchi, M.; Bellotti, F.; Casagli, N. Mapping landslide phenomena in landlocked developing countries by means of satellite remote sensing data: The case of Dilijan (Armenia) area. Geomat. Nat. Hazards Risk 2017, 8, 225–241. [Google Scholar] [CrossRef]
- Chen, F.; Lin, H.; Zhou, W.; Hong, T.; Wang, G. Surface deformation detected by ALOS PALSAR small baseline SAR interferometry over permafrost environment of Beiluhe section, Tibet Plateau, China. Remote Sens. Environ. 2013, 138, 10–18. [Google Scholar] [CrossRef]
- Chen, F.; Lin, H.; Li, Z.; Chen, Q.; Zhou, J. Interaction between permafrost and infrastructure along the Qinghai–Tibet Railway detected via jointly analysis of C-and L-band small baseline SAR interferometry. Remote Sens. Environ. 2012, 123, 532–540. [Google Scholar] [CrossRef]
- Jia, Y.; Kim, J.-W.; Shum, C.; Lu, Z.; Ding, X.; Zhang, L.; Erkan, K.; Kuo, C.-Y.; Shang, K.; Tseng, K.-H. Characterization of Active Layer Thickening Rate over the Northern Qinghai-Tibetan Plateau Permafrost Region Using ALOS Interferometric Synthetic Aperture Radar Data, 2007–2009. Remote Sens. 2017, 9, 84. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, T.; Wahr, J. InSAR measurements of surface deformation over permafrost on the North Slope of Alaska. J. Geophys. Res. Earth Surf. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.; Hanssen, R.F. Detection of permafrost sensitivity of the Qinghai–Tibet railway using satellite radar interferometry. Int. J. Remote Sens. 2015, 36, 691–700. [Google Scholar] [CrossRef]
- Zhao, R.; Li, Z.-W.; Feng, G.-C.; Wang, Q.-J.; Hu, J. Monitoring surface deformation over permafrost with an improved SBAS-InSAR algorithm: With emphasis on climatic factors modeling. Remote Sens. Environ. 2016, 184, 276–287. [Google Scholar] [CrossRef]
- Daout, S.; Doin, M.P.; Peltzer, G.; Socquet, A.; Lasserre, C. Large-scale InSAR monitoring of permafrost freeze-thaw cycles on the Tibetan Plateau. Geophys. Res. Lett. 2017, 44, 901–909. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Z.; Zhang, H.; Wu, Q.; Zhang, B.; Tang, Y. Seasonal deformation features on Qinghai-Tibet railway observed using time-series InSAR technique with high-resolution TerraSAR-X images. Remote Sens. Lett. 2017, 8, 1–10. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, H.; Zhang, B.; Tang, Y.; Zhang, Z.; Liu, M.; Zhao, L. New mode TerraSAR-X interferometry for railway monitoring in the permafrost region of the Tibet Plateau. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 1634–1637. [Google Scholar]
- Short, N.; Brisco, B.; Couture, N.; Pollard, W.; Murnaghan, K.; Budkewitsch, P. A comparison of TerraSAR-X, RADARSAT-2 and ALOS-PALSAR interferometry for monitoring permafrost environments, case study from Herschel Island, Canada. Remote Sens. Environ. 2011, 115, 3491–3506. [Google Scholar] [CrossRef]
- Mora, O.; Mallorqui, J.J.; Broquetas, A. Linear and nonlinear terrain deformation maps from a reduced set of interferometric sar images. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2243–2253. [Google Scholar] [CrossRef] [Green Version]
- Strozzi, T.; Wegmuller, U.; Werner, C.; Wiesmann, A. Measurement of slow uniform surface displacement with mm/year accuracy. In Proceedings of the IEEE 2000 International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA, 24–28 July 2000; pp. 2239–2241. [Google Scholar]
- He, M.; He, X. Ground Subsidence Detection of Yancheng City Using Time Series Interferograms Stacking. Geomat. Inf. Sci. Wuhan Univ. 2011, 36, 1461–1465. [Google Scholar]
- Fan, J.; Guo, H.; Guo, X.; Liu, G.; Ge, D.; Liu, S. Monitoring subsidence in Tianjin area using interferogram stacking based on coherent targets. J. Remote Sens. 2008, 8, 111–118. [Google Scholar]
- Long, S.; Zhang, S.; Feng, T.; Li, L. A New Approach of Weighted Stacking Based on Common Master Image and Its Application in Ground Subsidence Monitoring. Acta Geod. Cartogr. Sin. 2012, 41, 844–850. [Google Scholar]
- Zhao, Q.; Lin, H.; Jiang, L. Ground deformation monitoring in Pearl River Delta region with Stacking D-InSAR technique. SPIE Digit. Libr. 2008, 7145. [Google Scholar] [CrossRef]
- Perissin, D.; Wang, T. Repeat-pass sar interferometry with partially coherent targets. IEEE Trans. Geosci. Remote Sens. 2012, 50, 271–280. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Z.; Mills, J. A new approach to selecting coherent pixels for ground-based SAR deformation monitoring. ISPRS J. Photogramm. Remote Sens. 2018, in press. [Google Scholar]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef] [Green Version]
- Hanssen, R.F. Radar Interferometry. In Data Interpretation and Error Analysis; Springer: New York, NY, USA, 2000. [Google Scholar]
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic aperture radar interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Ding, X.; Lu, Z. Ground settlement monitoring based on temporarily coherent points between two sar acquisitions. ISPRS 2010, 66, 146–152. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, C.; Yu, S. Accuracy Detection and Contrast Analysis between Reference 3D and ASTER DEM. Chin. Foreign Highway 2011, 31, 9–12. [Google Scholar]
- Yang, F. The Application of Reference 3D and Google Earth Data in the Overseas Railway Projects. Survey 2015, 1, 36–38. [Google Scholar]
- Liu, G.; Jia, H.; Nie, Y.; Li, T.; Zhang, R.; Yu, B.; Li, Z. Detecting Subsidence in Coastal Areas by Ultrashort-Baseline TCPInSAR on the Time Series of High-Resolution TerraSAR-X Images. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1911–1923. [Google Scholar]
- Dai, K.; Liu, G.; Yu, B.; Jia, H.; Ma, D.; Wang, X. Detecting Subsidence Along a High Speed Railway by Ultrashort Baseline TCP-InSAR with High Resolution Images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL-7/W2, 61–65. [Google Scholar] [CrossRef]
- Li, Z.; Muller, P.; Cross, P.; Fielding, E. Interferometric synthetic aperture radar (InSAR) atmospheric correction: GPS, moderate resolution imaging spectroradiometer (MODIS), and InSAR integration. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Permafrost-Wikipedia. Available online: https://en.wikipedia.org/wiki/Permafrost (accessed on 1 February 2018).
- Sun, Z. Influence of Permafrost on Foundation in Qinghai Area. Urban Constr. Theory Res. 2013, 21, 13–15. [Google Scholar]
- Luo, J.; Niu, F.; Lin, Z.; Liu, M.; Yin, G. Thermokarst lake changes between 1969 and 2010 in the beilu river basin, qinghai–tibet plateau, China. Sci. Bull. 2015, 60, 556–564. [Google Scholar] [CrossRef]
- Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef] [Green Version]
No. | Date of Acquisition | Perpendicular Baseline (m) | Temporal Baseline (Days) |
---|---|---|---|
1 | 20150509 | 59 | 44 |
2 | 20150520 | 45 | 33 |
3 | 20150531 | −80 | 22 |
4 | 20150611 | 68 | 11 |
5 | 20150622 | 0 | 0 |
6 | 20150703 | 46 | 11 |
7 | 20150714 | −95 | 22 |
8 | 20150725 | −122 | 33 |
9 | 20150805 | −39 | 44 |
10 | 20150827 | −118 | 66 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, K.; Liu, G.; Li, Z.; Ma, D.; Wang, X.; Zhang, B.; Tang, J.; Li, G. Monitoring Highway Stability in Permafrost Regions with X-band Temporary Scatterers Stacking InSAR. Sensors 2018, 18, 1876. https://doi.org/10.3390/s18061876
Dai K, Liu G, Li Z, Ma D, Wang X, Zhang B, Tang J, Li G. Monitoring Highway Stability in Permafrost Regions with X-band Temporary Scatterers Stacking InSAR. Sensors. 2018; 18(6):1876. https://doi.org/10.3390/s18061876
Chicago/Turabian StyleDai, Keren, Guoxiang Liu, Zhenhong Li, Deying Ma, Xiaowen Wang, Bo Zhang, Jia Tang, and Guangyu Li. 2018. "Monitoring Highway Stability in Permafrost Regions with X-band Temporary Scatterers Stacking InSAR" Sensors 18, no. 6: 1876. https://doi.org/10.3390/s18061876
APA StyleDai, K., Liu, G., Li, Z., Ma, D., Wang, X., Zhang, B., Tang, J., & Li, G. (2018). Monitoring Highway Stability in Permafrost Regions with X-band Temporary Scatterers Stacking InSAR. Sensors, 18(6), 1876. https://doi.org/10.3390/s18061876