3D Target Localization of Modified 3D MUSIC for a Triple-Channel K-Band Radar
<p>(<b>a</b>) Implemented 2 × 2 planar array with horn antennas; (<b>b</b>) Illustration of array configuration for joint range, azimuth, and elevation angle estimation.</p> "> Figure 2
<p>3D shift-invariant structure.</p> "> Figure 3
<p>Block diagram of implemented triple-channel K-band radar system.</p> "> Figure 4
<p>Frequency-modulated continuous-wave (FMCW) chirp generator ADF5901 evaluation board and 20 dB power amplifier.</p> "> Figure 5
<p>(<b>a</b>) Triple-channel receiver; (<b>b</b>) high-pass filter; (<b>c</b>) intermediate frequency (IF) amplifier.</p> "> Figure 6
<p>Data-logging platform.</p> "> Figure 7
<p>Transmitting antenna and receiving antennas.</p> "> Figure 8
<p>Transmitting antenna return loss and receiving antennas isolation characteristics.</p> "> Figure 9
<p>Radiation pattern of antenna elements.</p> "> Figure 10
<p>Experiment scenario in the chamber: (<b>a</b>) layout; (<b>b</b>) inside view.</p> "> Figure 11
<p>Results of the first set of experiments: (<b>a</b>) azimuth angle and elevation angle estimation; (<b>b</b>) range and azimuth angle estimation; (<b>c</b>) 3D view of target locations; (<b>d</b>) distribution of singular values.</p> "> Figure 11 Cont.
<p>Results of the first set of experiments: (<b>a</b>) azimuth angle and elevation angle estimation; (<b>b</b>) range and azimuth angle estimation; (<b>c</b>) 3D view of target locations; (<b>d</b>) distribution of singular values.</p> "> Figure 12
<p>Results of the second set of experiments: (<b>a</b>) azimuth angle and elevation angle estimation; (<b>b</b>) range and azimuth angle estimation; (<b>c</b>) 3D view of target locations; (<b>d</b>) distribution of singular values.</p> "> Figure 13
<p>Results of the third set of experiments: (<b>a</b>) azimuth angle and elevation angle estimation; (<b>b</b>) range and azimuth angle estimation; (<b>c</b>) 3D view of target locations; (<b>d</b>) distribution of singular values.</p> "> Figure 13 Cont.
<p>Results of the third set of experiments: (<b>a</b>) azimuth angle and elevation angle estimation; (<b>b</b>) range and azimuth angle estimation; (<b>c</b>) 3D view of target locations; (<b>d</b>) distribution of singular values.</p> "> Figure 14
<p>Results of fourth group experiments: (<b>a</b>) azimuth angle and elevation angle estimation; (<b>b</b>) range and azimuth angle estimation; (<b>c</b>) 3D view of target locations; (<b>d</b>) distribution of singular values.</p> ">
Abstract
:1. Introduction
2. System Model
3. Proposed Algorithm
3.1. Temporal Autocorrelation Matrix
3.2. Spatially Stacked Autocorrelation Matrix
3.3. SVD and Noise Subspace
3.4. Modified 3D Steering Vector
3.5. Transformation
3.6. Computational Burden Analysis
4. System Implementation
4.1. Transceiver and IF
4.2. 2 × 2 Horn Antenna Array
5. Experiments and Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Krim, H.; Viberg, M. Two decades of array signal processing research: The parametric approach. IEEE Signal Process. Mag. 1996, 13, 67–94. [Google Scholar] [CrossRef]
- Colone, F.; Bongioanni, C.; Lombardo, P. Multifrequency integration in FM radio-based passive bistatic radar. Part II: Direction of arrival estimation. IEEE Aerosp. Electron. Syst. Mag. 2003, 28, 40–47. [Google Scholar] [CrossRef]
- Kazemi, I.; Moniri, M.R.; Kandovan, R.S. Optimization of angle-of-arrival estimation via real-valued sparse representation with circular rrray radar. IEEE Access 2003, 1, 404–407. [Google Scholar] [CrossRef]
- Schmidt, R.O. Multiple emitter location and signal parameters estimation. IEEE Trans. Antennas Propag. 1986, 34, 267–280. [Google Scholar] [CrossRef]
- Roy, R.; Kailath, T. ESPRIT—Estimation of signal parameters via rotational invariance technique. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 984–995. [Google Scholar] [CrossRef]
- Gao, F.F.; Gershman, A.B. A generalized ESPRIT approach to direction-of-arrival estimation. IEEE Signal Process. Lett. 2005, 12, 254–257. [Google Scholar] [CrossRef]
- Lizzi, L.; Viani, F.; Benedetti, M.; Rocca, P.; Massa, A. The MDSO-ESPRIT method for maximum likelihood DOA estimation. Prog. Electromagn. Res. 2008, 80, 477–497. [Google Scholar] [CrossRef]
- Manokhin, G.O.; Erdyneev, Z.T.; Geltser, A.A.; Monastyrev, E.A. MUSIC-based algorithm for range-azimuth FMCW radar data processing without estimating number of targets. In Proceedings of the 2015 IEEE 15th Mediterranean Microwave Symposium (MMS), Lecce, Italy, 30 November–2 December 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Oh, D.; Ju, Y.; Nam, H.; Lee, J.H. Dual smoothing DOA estimation of two-channel FMCW radar. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 904–917. [Google Scholar] [CrossRef]
- Chen, F.J.; Kwong, S.; Kok, C.W. ESPRIT-like two-dimensional DOA estimation for coherent signals. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 1477–1484. [Google Scholar] [CrossRef]
- Yang, P.; Yang, F.; Nie, Z.-P. DOA estimation with subarray divided technique and interporlated ESPRIT algorithm on a cylindrical conformal array antenna. Prog. Electromagn. Res. 2010, 103, 201–216. [Google Scholar] [CrossRef]
- Harabi, F.; Changuel, H.; Gharsallah, A. Direction of arrival estimation method using a 2-L shape arrays antenna. Prog. Electromagn. Res. 2007, 69, 145–160. [Google Scholar] [CrossRef]
- Zhong, Y.; Chen, X. MUSIC Imaging and Electromagnetic Inverse Scattering of Multiply Scattering Small Anisotropic Spheres. IEEE Trans. Antennas Propag. 2007, 55, 3542–3549. [Google Scholar] [CrossRef]
- Winkler, V. Range Doppler detection for automotive FMCW radars. In Proceedings of the 2007 European Microwave Conference, Munich, Germany, 9–12 October 2007; pp. 1445–1448. [Google Scholar] [CrossRef]
- Lee, M.S. Signal Modeling and Analysis of a Planar Phased-Array FMCW Radar with Antenna Switching. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 179–182. [Google Scholar] [CrossRef]
- Gu, J.F.; Wang, K.; Wu, K. System Architecture and Signal Processing for Frequency-Modulated Continuous-Wave Radar Using Active Backscatter Tags. IEEE Trans. Signal Process. 2018, 66, 2258–2272. [Google Scholar] [CrossRef]
- Cao, R.; Liu, B.; Gao, F.; Zhang, X. A Low-Complex One-Snapshot DOA Estimation Algorithm with Massive ULA. IEEE Commun. Lett. 2017, 21, 1071–1074. [Google Scholar] [CrossRef]
- Fazli, R.; Nakhkash, M.; Heidari, A.A. Alleviating the Practical Restrictions for MUSIC Algorithm in Actual Microwave Imaging Systems: Experimental Assessment. IEEE Trans. Antennas Propag. 2014, 62, 3108–3118. [Google Scholar] [CrossRef]
- Nishimura, T.; Endo, T.; Ohgane, T.; Ogawa, Y. Parameter settings on DOA estimation of multi-band signals using a compressed sensing technique. In Proceedings of the 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), Jeju, Korea, 13–16 December 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Yoo, D.-S. A Low Complexity Subspace-based DOA Estimation Algorithm with Uniform Linear Array Correlation Matrix Subsampling. Int. J. Antennas Propag. 2015, 2015, 323545. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, J.; He, C. High resolution direction-of-arrival estimation based on compressive sensing with noval compression matrix. In Proceedings of the 2012 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC 2012), Hong Kong, China, 12–15 August 2012; pp. 764–767. [Google Scholar] [CrossRef]
- Feng, G.; Liu, Z. Parallel computation of SVD for high resolution DOA estimation. In Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (ISCAS ’98), Monterey, CA, USA, 31 May–3 June 1998; Volume 5, pp. 25–28. [Google Scholar] [CrossRef]
- Gu, J.F.; Wei, P.; Tai, H.M. Two-Dimensional DOA Estimation by Cross-Correlation Matrix Stacking. Circuits Syst. Signal Process. 2011, 30, 339–353. [Google Scholar] [CrossRef]
- Wax, M.; Kailath, T. Detection of Signals by Information Theoretic Criteria. IEEE Trans. Acoust. Speech Signal Process. 1985, 33, 387–392. [Google Scholar] [CrossRef]
- Grünwald, P.D.; Myung, J.I.; Pitt, M.A. Advances in Minimum Description Length: Theory and Applications; MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Lemma, A.N.; van der Veen, A.J.; Deprettere, E.F. Analysis of joint angle-frequency estimation using ESPRIT. IEEE Trans. Signal Process. 2003, 51, 1264–1283. [Google Scholar] [CrossRef]
- Yan, F.; Chen, Z.; Sun, M.; Shen, Y.; Jin, M. Two-Dimensional Direction-of-Arrivals Estimation Based on One-Dimensional Search Using Rank Deficiency Principle. Int. J. Antennas Propag. 2015, 2015, 127621. [Google Scholar] [CrossRef]
- Si, W.; Wang, Y.; Hou, C.; Wang, H. Real-Valued 2D MUSIC Algorithm Based on Modified Forward/Backward Averaging Using an Arbitrary Centrosymmetric Polarization Sensitive Array. Sensors 2017, 17, 2241. [Google Scholar] [CrossRef] [PubMed]
- Van Treesn, H. Detection, Estimation, and Modulation Theory—Part IV Optimum Array Process; Wiley: New York, NY, USA, 2002. [Google Scholar]
Operation Description | Computational Complexity |
---|---|
SVD of R | O((3Lr)2Lr + 3Lr + ) = O(13) |
Us | O() |
Three-dimensional searching | O(B3K3) |
Parameter | Specification |
---|---|
Modulation type | FMCW |
Carrier frequency | 24.025 GHz~24.225 GHz |
Bandwidth | 200 MHz |
Sweep time | 100 μs |
Tx and Rx antenna | 2 × 2 horn antenna array |
Number of Rx channels | 3 Channel |
EIRP | 28 dBm |
Receiver noise figure | 10 dB |
Receiver RF maximum gain | 50 dB (Max.) |
Maximum IF gain | 40 dB (Max.) |
Receiver dynamic range | 72 dB |
RF power consumption | 4 W |
Target 1 | Target 2 | Target 3 | Target 4 | |
---|---|---|---|---|
1st experiment | (−1.2, 6.2, −0.3) | |||
2nd experiment | (−1.2, 6.2, −0.3) | (0.4, 6, −0.3) | ||
3rd experiment | (−1.2, 6.2, −0.3) | (−0.4, 6.2, −0.3) | (0.4, 6, −0.3) | |
4th experiment | (−1.2, 6.2, −0.3) | (−0.4, 6.2, −0.3) | (0.4, 6, −0.3) | (1.2, 6, −0.3) |
Target 1 | Target 2 | Target 3 | Target 4 | |
---|---|---|---|---|
1st experiment | 0.1725 | |||
2nd experiment | 0.1773 | 0.1768 | ||
3rd experiment | 0.1806 | 0.1784 | 0.1788 | |
4th experiment | 0.1832 | 0.1812 | 0.1795 | 0.1821 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.-C.; Choi, B.; Chong, J.-W.; Oh, D. 3D Target Localization of Modified 3D MUSIC for a Triple-Channel K-Band Radar. Sensors 2018, 18, 1634. https://doi.org/10.3390/s18051634
Li Y-C, Choi B, Chong J-W, Oh D. 3D Target Localization of Modified 3D MUSIC for a Triple-Channel K-Band Radar. Sensors. 2018; 18(5):1634. https://doi.org/10.3390/s18051634
Chicago/Turabian StyleLi, Ying-Chun, Byunggil Choi, Jong-Wha Chong, and Daegun Oh. 2018. "3D Target Localization of Modified 3D MUSIC for a Triple-Channel K-Band Radar" Sensors 18, no. 5: 1634. https://doi.org/10.3390/s18051634
APA StyleLi, Y. -C., Choi, B., Chong, J. -W., & Oh, D. (2018). 3D Target Localization of Modified 3D MUSIC for a Triple-Channel K-Band Radar. Sensors, 18(5), 1634. https://doi.org/10.3390/s18051634