Optimal Control for Aperiodic Dual-Rate Systems With Time-Varying Delays
<p>Block diagram of a dual-rate system with fast input.</p> "> Figure 2
<p>Schematic view of the air levitation control loop.</p> "> Figure 3
<p>Balance of forces of the air levitation system used in the experiment. The red arrow shows the gravitational force, while the green arrow shows the force applied by the air flow.</p> "> Figure 4
<p>Norm of the state vector (<b>left</b>) and output response (<b>right</b>) of the linear model of the air levitation system. Solid black line: the proposed algorithm. Dot-dashed blue line: the algorithm in [<a href="#B30-sensors-18-01491" class="html-bibr">30</a>]. Dashed red line: auxiliary PI controller.</p> "> Figure 5
<p>Histogram of times of application of <math display="inline"><semantics> <msub> <mi>u</mi> <mn>1</mn> </msub> </semantics></math> in the linear model of the air levitation system.</p> "> Figure 6
<p>Output response of the air levitation system in the stabilization experiment. Solid black line: proposed algorithm. Dot-dashed blue line: algorithm in [<a href="#B30-sensors-18-01491" class="html-bibr">30</a>]. Dashed red line: auxiliary PI controller.</p> "> Figure 7
<p>Input voltage applied to the air levitation system in the stabilization experiment. From top to bottom: the proposed algorithm, the algorithm in [<a href="#B30-sensors-18-01491" class="html-bibr">30</a>], and the auxiliary PI controller.</p> "> Figure 8
<p>Histogram of times of application of <math display="inline"><semantics> <msub> <mi>u</mi> <mn>1</mn> </msub> </semantics></math> in the real system.</p> "> Figure 9
<p>Output response of the air levitation system in the disturbance rejection experiment. Solid black line: proposed algorithm. Dot-dashed blue line: algorithm in [<a href="#B30-sensors-18-01491" class="html-bibr">30</a>]. Dashed red line: auxiliary PI controller.</p> "> Figure 10
<p>Disturbance applied to the system. Solid black line: proposed algorithm. Dot-dashed blue line: algorithm in [<a href="#B30-sensors-18-01491" class="html-bibr">30</a>]. Dashed red line: auxiliary PI controller.</p> "> Figure 11
<p>Input voltage applied to the air levitation system in the disturbance rejection experiment. From top to bottom: the proposed algorithm, the algorithm in [<a href="#B30-sensors-18-01491" class="html-bibr">30</a>], and the auxiliary PI controller.</p> ">
Abstract
:1. Introduction
Preliminaries
2. Problem Statement
3. Control Algorithm for Decay Rate Optimization
3.1. Extension for Time-Varying Delay Systems
3.2. Implementation of Optimization Algorithm in Real-Time Systems
Algorithm 1 Optimization algorithm with limited computation resources. |
Offline Computation
Online Computation
|
4. Practical Case: Air Levitation System
4.1. Hardware Description
4.2. System Model
4.3. Experimental Results
5. Discussion
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
References
- Mansano, R.K.; Godoy, E.P.; Porto, A.J. The Benefits of Soft Sensor and Multi-Rate Control for the Implementation of Wireless Networked Control Systems. Sensors 2014, 14, 24441–24461. [Google Scholar] [CrossRef] [PubMed]
- Shao, Q.M.; Cinar, A. System identification and distributed control for multi-rate sampled systems. J. Process Control 2015, 34, 1–12. [Google Scholar] [CrossRef]
- Albertos, P.; Salt, J. Non-uniform sampled-data control of MIMO systems. Annu. Rev. Control 2011, 35, 65–76. [Google Scholar] [CrossRef]
- Cuenca, Á.; Salt, J. RST controller design for a non-uniform multi-rate control system. J. Process Control 2012, 22, 1865–1877. [Google Scholar] [CrossRef]
- Cuenca, Á.; Ojha, U.; Salt, J.; Chow, M.Y. A non-uniform multi-rate control strategy for a Markov chain-driven Networked Control System. Inf. Sci. 2015, 321, 31–47. [Google Scholar] [CrossRef]
- Kalman, R.E.; Bertram, J.E. General synthesis procedure for computer control of single-loop and multiloop linear systems (An optimal sampling system). Trans. Am. Inst. Electr. Eng. Part II Appl. Ind. 1959, 77, 602–609. [Google Scholar] [CrossRef]
- Khargonekar, P.P.; Poolla, K.; Tannenbaum, A. Robust control of linear time-invariant plants using periodic compensation. IEEE Trans. Autom. Control 1985, 30, 1088–1096. [Google Scholar] [CrossRef]
- Bamieh, B.; Pearson, J.B.; Francis, B.A.; Tannenbaum, A. A lifting technique for linear periodic systems with applications to sampled-data control. Syst. Control Lett. 1991, 17, 79–88. [Google Scholar] [CrossRef]
- Li, D.; Shah, S.L.; Chen, T.; Qi, K.Z. Application of dual-rate modeling to CCR octane quality inferential control. IEEE Trans. Control Syst. Technol. 2003, 11, 43–51. [Google Scholar] [CrossRef]
- Salt, J.; Albertos, P. Model-based multirate controllers design. IEEE Trans. Control Syst. Technol. 2005, 13, 988–997. [Google Scholar] [CrossRef]
- Nemani, M.; Tsao, T.C.; Hutchinson, S. Multi-rate analysis and design of visual feedback digital servo-control system. J. Dyn. Syst. Meas. Control 1994, 116, 45–55. [Google Scholar] [CrossRef]
- Sim, T.P.; Hong, G.S.; Lim, K.B. Multirate predictor control scheme for visual servo control. IEE Proc.-Control Theory Appl. 2002, 149, 117–124. [Google Scholar] [CrossRef]
- Huang, X.; Nagamune, R.; Horowitz, R. A comparison of multirate robust track-following control synthesis techniques for dual-stage and multisensing servo systems in hard disk drives. IEEE Trans. Magn. 2006, 42, 1896–1904. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, Y.; Zhang, W. A discrete-time chattering free sliding mode control with multirate sampling method for flight simulator. Math. Probl. Eng. 2013, 2013, 865493. [Google Scholar] [CrossRef]
- Salt, J.; Tomizuka, M. Hard disk drive control by model based dual-rate controller. Computation saving by interlacing. Mechatronics 2014, 24, 691–700. [Google Scholar] [CrossRef]
- Salt, J.; Casanova, V.; Cuenca, A.; Pizá, R. Multirate control with incomplete information over Profibus-DP network. Int. J. Syst. Sci. 2014, 45, 1589–1605. [Google Scholar] [CrossRef]
- Liu, F.; Gao, H.; Qiu, J.; Yin, S.; Fan, J.; Chai, T. Networked multirate output feedback control for setpoints compensation and its application to rougher flotation process. IEEE Trans. Ind. Electron. 2014, 61, 460–468. [Google Scholar] [CrossRef]
- Khargonekar, P.P.; Sivashankar, N. H2 optimal control for sampled-data systems. Syst. Control Lett. 1991, 17, 425–436. [Google Scholar] [CrossRef]
- Tornero, J.; Albertos, P.; Salt, J. Periodic optimal control of multirate sampled data systems. IFAC Proc. Vol. 2001, 34, 195–200. [Google Scholar] [CrossRef]
- Kim, C.H.; Park, H.J.; Lee, J.; Lee, H.W.; Lee, K.D. Multi-rate optimal controller design for electromagnetic suspension systems via linear matrix inequality optimization. J. Appl. Phys. 2015, 117, 17B506. [Google Scholar] [CrossRef]
- Lee, J.H.; Gelormino, M.S.; Morarih, M. Model predictive control of multi-rate sampled-data systems: A state-space approach. Int. J. Control 1992, 55, 153–191. [Google Scholar] [CrossRef]
- Mizumoto, I.; Ikejiri, M.; Takagi, T. Stable Adaptive Predictive Control System Design via Adaptive Output Predictor for Multi-rate Sampled Systems. IFAC-PapersOnLine 2015, 48, 1039–1044. [Google Scholar] [CrossRef]
- Geng, Y.; Liu, B. Guaranteed cost control for the multi-rate networked control systems with output prediction. In Proceedings of the IEEE International Conference on Information and Automation, Lijiang, China, 8–10 August 2015; pp. 3020–3025. [Google Scholar]
- Carpiuc, S.C.; Lazar, C. Real-time multi-rate predictive cascade speed control of synchronous machines in automotive electrical traction drives. IEEE Trans. Ind. Electron. 2016, 63, 5133–5142. [Google Scholar] [CrossRef]
- Roshany-Yamchi, S.; Cychowski, M.; Negenborn, R.R.; De Schutter, B.; Delaney, K.; Connell, J. Kalman filter-based distributed predictive control of large-scale multi-rate systems: Application to power networks. IEEE Trans. Control Syst. Technol. 2013, 21, 27–39. [Google Scholar] [CrossRef]
- Anta, A.; Tabuada, P. On the minimum attention and anytime attention problems for nonlinear systems. In Proceedings of the 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010; pp. 3234–3239. [Google Scholar]
- Donkers, M.C.F.; Tabuada, P.; Heemels, W.P.M.H. Minimum attention control for linear systems. Discret. Event Dyn. Syst. 2014, 24, 199–218. [Google Scholar] [CrossRef]
- Gupta, V. On an anytime algorithm for control. In Proceedings of the 48th IEEE Conference Decision and Control (CDC), Shanghai, China, 16–18 December 2009; pp. 6218–6223. [Google Scholar]
- Quevedo, D.E.; Ma, W.J.; Gupta, V. Anytime control using input sequences with Markovian processor availability. IEEE Trans. Autom. Control 2015, 60, 515–521. [Google Scholar] [CrossRef]
- Aranda-Escolástico, E.; Guinaldo, M.; Cuenca, Á.; Salt, J.; Dormido, S. Anytime Optimal Control Strategy for Multi-Rate Systems. IEEE Access 2017, 5, 2790–2797. [Google Scholar] [CrossRef]
- Guinaldo, M.; Sánchez, J.; Dormido, S. Event-based Control for Networked Systems: From Centralized to Distributed Approaches. RIAI-Rev. Iberoam. Autom. Inform. Ind. 2017, 14, 16–30. [Google Scholar] [CrossRef]
- Loan, C.V. The sensitivity of the matrix exponential. SIAM J. Numer. Anal. 1977, 14, 971–981. [Google Scholar] [CrossRef]
- Khalil, H. Nonlinear Systems, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Hazan, E. Introduction to Online Convex Optimization. Found. Trends Optim. 2016, 2, 157–325. [Google Scholar] [CrossRef]
- Sala, A.; Cuenca, Á.; Salt, J. A retunable PID multi-rate controller for a networked control system. Inf. Sci. 2009, 179, 2390–2402. [Google Scholar] [CrossRef]
- Upton, E.; Halfacree, G. Raspberry Pi User Guide; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Coley, G. Beaglebone Black System Reference Manual; Texas Instruments: Dallas, TX, USA, 2013. [Google Scholar]
- Chacon, J.; Saenz, J.; Torre, L.D.L.; Diaz, J.M.; Esquembre, F. Design of a Low-Cost Air Levitation System for Teaching Control Engineering. Sensors 2017, 17, 2321. [Google Scholar] [CrossRef] [PubMed]
Controller | Settling Time | ISE (Stabilization) | ISE (Sawtooth Wave) | ISE (Impulse) |
---|---|---|---|---|
Auxiliary PI controller | s | |||
Algorithm in [30] | s | |||
Proposed algorithm | s |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aranda-Escolástico, E.; Salt, J.; Guinaldo, M.; Chacón, J.; Dormido, S. Optimal Control for Aperiodic Dual-Rate Systems With Time-Varying Delays. Sensors 2018, 18, 1491. https://doi.org/10.3390/s18051491
Aranda-Escolástico E, Salt J, Guinaldo M, Chacón J, Dormido S. Optimal Control for Aperiodic Dual-Rate Systems With Time-Varying Delays. Sensors. 2018; 18(5):1491. https://doi.org/10.3390/s18051491
Chicago/Turabian StyleAranda-Escolástico, Ernesto, Julián Salt, María Guinaldo, Jesús Chacón, and Sebastián Dormido. 2018. "Optimal Control for Aperiodic Dual-Rate Systems With Time-Varying Delays" Sensors 18, no. 5: 1491. https://doi.org/10.3390/s18051491
APA StyleAranda-Escolástico, E., Salt, J., Guinaldo, M., Chacón, J., & Dormido, S. (2018). Optimal Control for Aperiodic Dual-Rate Systems With Time-Varying Delays. Sensors, 18(5), 1491. https://doi.org/10.3390/s18051491