Demonstration of a Speckle Based Sensing with Pulse-Doppler Radar for Vibration Detection
<p>(<b>a</b>) View from behind the radar. The target is located 80 m from the radar. The target is shown in the inset; (<b>b</b>) ELTA radar used in the experiment.</p> "> Figure 2
<p>Doppler frequencies vs. range with the vehicle at a distance of 80 m. Each range cell represents 40 m. The target and the reference person are located in range cell 2.</p> "> Figure 3
<p>(<b>a</b>) Section along the Doppler frequency axis at the vehicle location when the engine is off. Note that the maximum response is shown as an unsymmetrical peak value adjacent the 110 dBm peak value, and relates to the moving reference person (red circle). (<b>b</b>) Section along the Doppler range axis at 0.01 Hz.</p> "> Figure 4
<p>(<b>a</b>) Section along the Doppler frequency axis at the vehicle location when the engine is on. Note that the maximum response is shown as an unsymmetrical peak value adjacent the 110 dBm peak value and relates to the moving reference person (red circle). (<b>b</b>) Section along the Doppler range axis at 0.01 Hz.</p> "> Figure 5
<p>Summary of the speckle processing algorithm.</p> "> Figure 6
<p>Temporal vibrations of the target with engine ignition off. The y-axis represents the arbitrary units of the temporal RF speckle pattern movement.</p> "> Figure 7
<p>Frequency response at three different locations with engine ignition off.</p> "> Figure 8
<p>Frequency response at three different locations with the engine ignition turned on.</p> "> Figure 9
<p>Difference between the maximum peaks when the car’s ignition was turned on and off.</p> ">
Abstract
:1. Introduction
2. Experimental Setup—Pulse-Doppler Radar
3. Experimental Results
3.1. Remote Vibrations Monitoring Using Doppler Technique
3.2. Remote Vibrations Monitoring Using RF Speckle
4. Discussion and Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Zalevsky, Z.; Beiderman, Y.; Margalit, I.; Gingold, S.; Teicher, M.; Mico, V.; Garcia, J. Simultaneous remote extraction of multiple speech sources and heart beats from secondary speckles pattern. Opt. Express 2009, 17, 21566–21580. [Google Scholar] [CrossRef] [PubMed]
- Golberg, M.; Ruiz-Rivas, J.; Polani, S.; Beiderman, Y.; Zalevsky, Z. Large-scale clinical validation of noncontact and continuous extraction of blood pressure via multipoint defocused photonic imaging. Appl. Opt. 2018, 57, B45. [Google Scholar] [CrossRef] [PubMed]
- Ozana, N.; Margalith, I.; Beiderman, Y.; Kunin, M.; Campino, G.A.; Gerasi, R.; Garcia, J.; Mico, V.; Zalevsky, Z. Demonstration of a Remote Optical Measurement Configuration That Correlates With Breathing, Heart Rate, Pulse Pressure, Blood Coagulation, and Blood Oxygenation. Proc. IEEE 2015, 103, 248–262. [Google Scholar] [CrossRef]
- Beiderman, Y.; Horovitz, I.; Burshtein, N.; Teicher, M.; Garcia, J.; Mico, V.; Zalevsky, Z. Remote estimation of blood pulse pressure via temporal tracking of reflected secondary speckles pattern. J. Biomed. Opt. 2010, 15, 61707. [Google Scholar] [CrossRef] [PubMed]
- Bishitz, Y.; Ozana, N.; Beiderman, Y.; Tenner, F.; Schmidt, M.; Mico, V.; Garcia, J.; Zalevsky, Z. Noncontact optical sensor for bone fracture diagnostics. Biomed. Opt. Express 2015, 6, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Ozana, N.; Bishitz, Y.; Beiderman, Y.; Garcia, J.; Zalevsky, Z.; Schwarz, A. Remote optical configuration of pigmented lesion detection and diagnosis of bone fractures. Int. Soc. Opt. Photonics 2016, 9689. [Google Scholar] [CrossRef]
- Ozana, N.; Arbel, N.; Beiderman, Y.; Mico, V.; Sanz, M.; Garcia, J.; Anand, A.; Javidi, B.; Epstein, Y.; Zalevsky, Z. Improved noncontact optical sensor for detection of glucose concentration and indication of dehydration level. Biomed. Opt. Express 2014, 5, 1926–1940. [Google Scholar] [CrossRef] [PubMed]
- Ozana, N.; Beiderman, Y.; Anand, A.; Javidi, B.; Polani, S.; Schwarz, A.; Shemer, A.; Garcia, J.; Zalevsky, Z. Noncontact speckle-based optical sensor for detection of glucose concentration using magneto-optic effect. J. Biomed. Opt. 2016, 21, 65001. [Google Scholar] [CrossRef] [PubMed]
- Ozana, N.; Buchsbaum, S.; Bishitz, Y.; Beiderman, Y.; Schmilovitch, Z.; Schwarz, A.; Shemer, A.; Keshet, J.; Zalevsky, Z. Optical remote sensor for peanut kernel abortion classification. Appl. Opt. 2016, 55, 4005. [Google Scholar] [CrossRef] [PubMed]
- Shenhav, A.; Brodie, Z.; Beiderman, Y.; Garcia, J.; Mico, V.; Zalevsky, Z. Optical sensor for remote estimation of alcohol concentration in blood stream. Opt. Commun. 2013, 289, 149–157. [Google Scholar] [CrossRef]
- Schwarz, A.; Shemer, A.; Ozana, N.; Garcia, J.; Zalevsky, Z. Augmentative Alternative Communication using Eyelid Movement Remote Detection by Speckle Patterns Tracking System for Amyotrophic Lateral Sclerosis Disease. In Optics in the Life Sciences Congress; OSA: Washington, DC, USA, 2017; p. JTu4A.31. [Google Scholar]
- Schwarz, A.; Shemer, A.; Ozana, N.; Califa, R.; García, J.; Zalevsky, Z. Laser Vibrometer Interferometry for Speckle Patterns Tracking Systems. In Conference on Lasers and Electro-Optics; OSA: Washington, DC, USA, 2017; p. JW2A.1. [Google Scholar]
- Schwarz, A.; Shemer, A.; Ozana, N.; Califa, R.; García, J.; Zalevsky, Z. An Optical Remote Sensor for Fingerprint Identification using Speckle Pattern. In Conference on Lasers and Electro-Optics; OSA: Washington, DC, USA, 2017; p. ATu3C.5. [Google Scholar]
- Cumming, I.G.; Wong, F.H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation; Artech House: Norwood, MA, USA, 2005; ISBN 9781580530583. [Google Scholar]
- Kim, S.-D.; Ju, Y.; Lee, J.-H. Design and implementation of a full-digital pulse-Doppler radar system for automotive applications. In Proceedings of the 2011 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 9–12 January 2011; pp. 563–564. [Google Scholar]
- Proakis, J.G.; Manolakis, D.G. Digital Signal Processing: Principles, Algorithms, and Applications; Prentice Hall: Upper Saddle River, NJ, USA, 1996; ISBN 9780133737622. [Google Scholar]
- Khan, S.A. Digital Design of Signal Processing Systems: A Practical Approach; Wiley: Hoboken, NJ, USA, 2011; ISBN 9780470741832. [Google Scholar]
- Bala Bhanu, M.; Deepthi, P.; Rao, K.V.R. Simulation Analysis of Real-Time Signal Processor for Pulse Doppler Radar. Int. J. Sci. Technol. Res. 2013, 2, 236–239. [Google Scholar]
- Kajiwara, A. Stepped-FM Pulse Radar for Vehicular Collision Avoidance. Electron. Commun. Jpn. Part I Commun. 1999, 82, 1–7. [Google Scholar] [CrossRef]
- Andrew, G.A.A., Jr. Optimal Radar Doppler Processors; Naval Research Lab: Washington, DC, USA, 1974; Volume 86. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozana, N.; Bauer, R.; Ashkenazy, K.; Sasson, N.; Schwarz, A.; Shemer, A.; Zalevsky, Z. Demonstration of a Speckle Based Sensing with Pulse-Doppler Radar for Vibration Detection. Sensors 2018, 18, 1409. https://doi.org/10.3390/s18051409
Ozana N, Bauer R, Ashkenazy K, Sasson N, Schwarz A, Shemer A, Zalevsky Z. Demonstration of a Speckle Based Sensing with Pulse-Doppler Radar for Vibration Detection. Sensors. 2018; 18(5):1409. https://doi.org/10.3390/s18051409
Chicago/Turabian StyleOzana, Nisan, Reuven Bauer, Koby Ashkenazy, Nissim Sasson, Ariel Schwarz, Amir Shemer, and Zeev Zalevsky. 2018. "Demonstration of a Speckle Based Sensing with Pulse-Doppler Radar for Vibration Detection" Sensors 18, no. 5: 1409. https://doi.org/10.3390/s18051409
APA StyleOzana, N., Bauer, R., Ashkenazy, K., Sasson, N., Schwarz, A., Shemer, A., & Zalevsky, Z. (2018). Demonstration of a Speckle Based Sensing with Pulse-Doppler Radar for Vibration Detection. Sensors, 18(5), 1409. https://doi.org/10.3390/s18051409