Path Diversity Improved Opportunistic Routing for Underwater Sensor Networks
"> Figure 1
<p>Opportunistic routing diagram.</p> "> Figure 2
<p>Candidates selection diagram—an example.</p> "> Figure 3
<p>An example of one-hop candidates selection.</p> "> Figure 4
<p>Candidate coordination diagram.</p> "> Figure 5
<p>Verifying the impact of candidate set size and path correlation on network performance. (<b>a</b>) Packet delivery ratio; (<b>b</b>) Average candidate number.</p> "> Figure 6
<p>Compared with the previous solutions in static scenario. (<b>a</b>) Packet delivery ratio; (<b>b</b>) End-to-End delay; (<b>c</b>) Energy consumption per node and packet; (<b>d</b>) Average candidate number.</p> "> Figure 7
<p>PRCS with different forwarding progress threshold. (<b>a</b>) Packet delivery ratio; (<b>b</b>) End-to-End delay; (<b>c</b>) Energy consumption per node and packet; (<b>d</b>) Average candidate number.</p> "> Figure 8
<p>Compared with the previous solutions in mobile scenario. (<b>a</b>) Packet delivery ratio; (<b>b</b>) End-to-End delay; (<b>c</b>) Energy consumption per node and packet; (<b>d</b>) Average candidate number.</p> "> Figure 9
<p>PRCS/PICS with different neighbor information update interval. (<b>a</b>) Packet delivery ratio; (<b>b</b>) End-to-End delay; (<b>c</b>) Energy consumption per node and packet; (<b>d</b>) Average candidate number.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Path Diversity Improved Opportunistic Routing
3.1. System Model
3.2. Path Diversity Improved Forwarding Mechanism
Algorithm 1 Candidates Selection Algorithm-PICS |
|
Algorithm 2 Candidates Selection Algorithm-PRCS |
|
3.3. Candidate Coordination
4. Simulation Result
5. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Akyildiz, I.F.; Pompili, D.; Melodia, T. Underwater acoustic sensor networks: Research challenges. Ad Hoc Netw. 2005, 3, 257–279. [Google Scholar] [CrossRef]
- Lloret, J.; Sendra, S.; Garcia, M.; Lloret, G. Group-based underwater wireless sensor network for marine fish farms. In Proceedings of the GLOBECOM Workshops (GC Wkshps), Houston, TX, USA, 5–9 December 2011. [Google Scholar]
- Lloret, J.; Garcia, M.; Sendra, S.; Lloret, G. An underwater wireless group-based sensor network for marine fish farms sustainability monitoring. Telecommun. Syst. 2015, 60, 67–84. [Google Scholar] [CrossRef]
- Li, B.; Wang, H.; Shen, X.; Yan, Y.; Yang, F.; Hua, F. Deep-water riser fatigue monitoring systems based on acoustic telemetry. J. Ocean Univ. China 2014, 13, 951–956. [Google Scholar] [CrossRef]
- Garcia, M.; Sendra, S.; Atenas, M.; Lloret, J. Underwater wireless ad-hoc networks: A survey. In Mobile Ad Hoc Networks: Current Status and Future Trends; CRC Press: Boca Raton, FL, USA, 2011; pp. 379–411. [Google Scholar]
- Coutinho, R.W.; Boukerche, A.; Vieira, L.F.; Loureiro, A.A. Design guidelines for opportunistic routing in underwater networks. IEEE Commun. Mag. 2016, 54, 40–48. [Google Scholar] [CrossRef]
- Darehshoorzadeh, A.; Boukerche, A. Underwater sensor networks: A new challenge for opportunistic routing protocols. IEEE Commun. Mag. 2015, 53, 98–107. [Google Scholar] [CrossRef]
- Jornet, J.M.; Stojanovic, M.; Zorzi, M. Focused beam routing protocol for underwater acoustic networks. In Proceedings of the Third ACM International Workshop on Underwater Networks, San Francisco, CA, USA, 14–19 September 2008; pp. 75–82. [Google Scholar]
- Xie, P.; Cui, J.H.; Lao, L. VBF: Vector-based forwarding protocol for underwater sensor networks. In Proceedings of the International Conference on Research in Networking, Ciimbra, Portugal, 15–19 May 2006; pp. 1216–1221. [Google Scholar]
- Nicolaou, N.; See, A.; Xie, P.; Cui, J.H.; Maggiorini, D. Improving the robustness of location-based routing for underwater sensor networks. In Proceedings of the Oceans 2007-Europe, Aberdeen, UK, 18–21 June 2007; pp. 1–6. [Google Scholar]
- Xie, P.; Zhou, Z.; Peng, Z.; Cui, J.H.; Shi, Z. Void avoidance in three-dimensional mobile underwater sensor networks. In Proceedings of the International Conference on Wireless Algorithms, Systems, and Applications, Boston, MA, USA, 16–18 August 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 305–314. [Google Scholar]
- Coutinho, R.W.; Boukerche, A.; Vieira, L.F.; Loureiro, A.A. A novel void node recovery paradigm for long-term underwater sensor networks. Ad Hoc Netw. 2015, 34, 144–156. [Google Scholar] [CrossRef]
- Yan, H.; Shi, Z.J.; Cui, J.H. DBR: Depth-based routing for underwater sensor networks. In Proceedings of the International Conference on Research in Networking, Singapore, 5–9 May 2008; pp. 72–86. [Google Scholar]
- Lee, U.; Wang, P.; Noh, Y. Pressure routing for underwater sensor networks. In Proceedings of the IEEE INFOCOM, San Diego, CA, USA, 14–19 March 2010. [Google Scholar]
- Noh, Y.; Lee, U.; Wang, P.; Choi, B.S.C.; Gerla, M. VAPR: Void-aware pressure routing for underwater sensor networks. IEEE Trans. Mob. Comput. 2013, 12, 895–908. [Google Scholar] [CrossRef]
- Ghoreyshi, S.M.; Shahrabi, A.; Boutaleb, T. A Novel Cooperative Opportunistic Routing Scheme for Underwater Sensor Networks. Sensors 2016, 16, 297. [Google Scholar] [CrossRef] [PubMed]
- Nowsheen, N.; Karmakar, G.; Kamruzzaman, J. An opportunistic message forwarding protocol for underwater acoustic sensor networks. In Proceedings of the 2013 19th Asia-Pacific Conference on Communications (APCC), Denpasar, Indonesia, 29–31 August 2013; pp. 172–177. [Google Scholar]
- Zeng, K.; Lou, W.; Yang, J.; Brown, D.R., III. On geographic collaborative forwarding in wireless ad hoc and sensor networks. In Proceedings of the Wireless Algorithms, Systems and Applications, Chicago, IL, USA, 1–3 August 2007; pp. 11–18. [Google Scholar]
- Ghoreyshi, S.M.; Shahrabi, A.; Boutaleb, T. Void-Handling Techniques for Routing Protocols in Underwater Sensor Networks: Survey and Challenges. IEEE Commu. Surv. Tutor. 2017, 19, 800–827. [Google Scholar] [CrossRef]
- Yu, H.; Yao, N.; Wang, T.; Li, G.; Gao, Z.; Tan, G. WDFAD-DBR: Weighting depth and forwarding area division DBR routing protocol for UASNs. Ad Hoc Netw. 2016, 37, 256–282. [Google Scholar] [CrossRef]
- Biswas, S.; Morris, R. ExOR: Opportunistic multi-hop routing for wireless networks. ACM SIGCOMM Comput. Commun. Rev. 2005, 35, 133–144. [Google Scholar] [CrossRef]
- Nowsheen, N.; Karmakar, G.; Kamruzzaman, J. An Adaptive Approach to Opportunistic Data Forwarding in Underwater Acoustic Sensor Networks. In Proceedings of the 2014 IEEE 13th International Symposium on Network Computing and Applications (NCA), Cambridge, MA, USA, 21–23 August 2014; pp. 229–236. [Google Scholar]
- Barbeau, M.; Blouin, S.; Cervera, G.; Garcia-Alfaro, J.; Kranakis, E. Location-free link state routing for underwater acoustic sensor networks. In Proceedings of the 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE), Halifax, NS, Canada, 3–6 May 2015; pp. 1544–1549. [Google Scholar]
- Stojanovic, M. On the relationship between capacity and distance in an underwater acoustic communication channel. ACM SIGMOBILE Mob. Comput. Commun. Rev. 2007, 11, 34–43. [Google Scholar] [CrossRef]
- Zhong, X.; Yan, Y.; Tay, W.P. Posterior Cramér-Rao lower bound for mobile emitter tracking based on a TDOA-FDOA multi-measurement model. In Proceedings of the Ubiquitous Wireless Broadband (ICUWB), Nanjing, China, 16–19 October 2016. [Google Scholar]
- Li, Z.; Guo, Z.; Hong, F.; Hong, L. E2-DTS: An energy efficiency distributed time synchronization algorithm for underwater acoustic mobile sensor networks. Ad Hoc Netw. 2013, 11, 1372–1380. [Google Scholar] [CrossRef]
- Van Kleunen, W.; Meratnia, N.; Havinga, P.J. Als-Coop-Loc: Cooperative combined localization and time-synchronization in underwater acoustic networks. In Proceedings of the 4th ACM SIGBED International Workshop on Design, Modeling, and Evaluation of Cyber-Physical Systems, Berlin, Germany, 14–17 April 2014; pp. 23–26. [Google Scholar]
- Liu, J.; Zhou, Z.; Peng, Z.; Cui, J.H.; Zuba, M.; Fiondella, L. Mobi-Sync: Efficient time synchronization for mobile underwater sensor networks. IEEE Trans. Parallel Distrib. Syst. 2013, 24, 406–416. [Google Scholar] [CrossRef]
- Rappaport, T.S. Wireless Communications: Principles and Practice, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Wang, S.; Basalamah, A.; Kim, S.M.; Guo, S.; Tobe, Y.; He, T. Link-correlation-aware opportunistic routing in wireless networks. IEEE Trans. Wirel. Commun. 2015, 14, 47–56. [Google Scholar] [CrossRef]
- Kim, S.M.; Wang, S.; He, T. Exploiting causes and effects of wireless link correlation for better performance. In Proceedings of the 2015 IEEE Conference on Computer Communications (INFOCOM), Kowloon, Hong Kong, China, 26 April–1 May 2015; pp. 379–387. [Google Scholar]
- Zubow, A.; Kurth, M.; Redlich, J.P. Considerations on forwarder selection for opportunistic protocols in wireless networks. In Proceedings of the Wireless Conference, Prague, Czech Republic, 22–25 June 2008; pp. 1–7. [Google Scholar]
- Xie, P.; Zhou, Z.; Peng, Z.; Yan, H.; Hu, T.; Cui, J.H.; Shi, Z.; Fei, Y.; Zhou, S. Aqua-Sim: An NS-2 based simulator for underwater sensor networks. In Proceedings of the OCEANS 2009, MTS/IEEE Biloxi-Marine Technology for Our Future: Global and Local Challenges, Biloxi, MS, USA, 26–29 October 2009. [Google Scholar]
- LinkQuest. Available online: http://www.link-quest.com/ (accessed on 22 April 2018).
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, W.; Wang, H.; He, K.; Zhao, R. Path Diversity Improved Opportunistic Routing for Underwater Sensor Networks. Sensors 2018, 18, 1293. https://doi.org/10.3390/s18041293
Bai W, Wang H, He K, Zhao R. Path Diversity Improved Opportunistic Routing for Underwater Sensor Networks. Sensors. 2018; 18(4):1293. https://doi.org/10.3390/s18041293
Chicago/Turabian StyleBai, Weigang, Haiyan Wang, Ke He, and Ruiqin Zhao. 2018. "Path Diversity Improved Opportunistic Routing for Underwater Sensor Networks" Sensors 18, no. 4: 1293. https://doi.org/10.3390/s18041293
APA StyleBai, W., Wang, H., He, K., & Zhao, R. (2018). Path Diversity Improved Opportunistic Routing for Underwater Sensor Networks. Sensors, 18(4), 1293. https://doi.org/10.3390/s18041293