A Student’s t Mixture Probability Hypothesis Density Filter for Multi-Target Tracking with Outliers
<p>Illustration of heavy-tailed noise distribution and Gaussian noise distribution.</p> "> Figure 2
<p>True trajectories of each target.</p> "> Figure 3
<p>Measurements and true target positions versus time: (<b>a</b>) in x coordinate; (<b>b</b>) in y coordinate.</p> "> Figure 4
<p>Comparison of cardinality estimation of two filters with fixed clutter rate (λ<sub>c</sub> = 20).</p> "> Figure 5
<p>Comparison of OSPA distance of two filters with fixed clutter rate (λ<sub>c</sub> = 20).</p> "> Figure 6
<p>Comparison of OSPA distance of two filters with different contaminated rate.</p> "> Figure 7
<p>Comparison of OSPA distance for two filters with different clutter rate.</p> "> Figure 8
<p>True trajectories of each target.</p> "> Figure 9
<p>Measurements and true target positions versus time: (<b>a</b>) in x coordinate; (<b>b</b>) in y coordinate.</p> "> Figure 10
<p>Comparison of cardinality estimation of two filters with fixed clutter rate (λ<sub>c</sub> = 20).</p> "> Figure 11
<p>Comparison of OSPA distance of two filters with fixed clutter rate (λ<sub>c</sub> = 20).</p> "> Figure 12
<p>Comparison of OSPA distance of two filters with different contamination rates.</p> "> Figure 13
<p>Comparison of OSPA distance of two filters with different clutter rates.</p> ">
Abstract
:1. Introduction
2. Background
2.1. The PHD Filter
2.2. Review of the GM-PHD Filter
2.3. Student’s t Distribution
3. Student’s t Mixture PHD Recursion
3.1. Basic Assumptions for Linear Model
3.2. Student’s t Mixture PHD Recursion
3.3. Implementation Issues
3.4. Extension to Nonlinear Model
4. Simulations and Results
4.1. Linear Scenario
4.2. Nonlinear Scenario
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
(see [22]) |
Appendix B
References
- Mahler, R.P.S. Advances in Statistical Multisource-Multitarget Information Fusion; Artech House: Norwood, MA, USA, 2014. [Google Scholar]
- Bar-Shalom, Y.; Kirubarajan, T.; Li, X.R. Estimation with Applications to Tracking and Navigation; Wiley: Hoboken, NJ, USA, 2001; pp. 993–999. [Google Scholar]
- Mahler, R.P.S. Multitarget Bayes Filtering via First-Order Multitarget Moments. IEEE Trans. Aerosp. Electron. Syst. 2004, 39, 1152–1178. [Google Scholar] [CrossRef]
- Mahler, R.P.S. PHD Filters of Higher Order in Target Number. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 1523–1543. [Google Scholar] [CrossRef]
- Vo, B.T.; Vo, B.N.; Cantoni, A. The Cardinality Balanced Multi-Target Multi-Bernoulli Filter and its Implementations. IEEE Trans. Signal Process. 2009, 57, 409–423. [Google Scholar]
- Vo, B.T.; Vo, B.N. Labeled Random Finite Sets and Multi-Object Conjugate Priors. IEEE Trans. Signal Process. 2013, 61, 3460–3475. [Google Scholar] [CrossRef]
- Reuter, S.; Vo, B.T.; Vo, B.N.; Dietmayer, K. The Labeled Multi-Bernoulli Filter. IEEE Trans. Signal Process. 2014, 62, 3246–3260. [Google Scholar]
- Vo, B.N.; Singh, S.; Doucet, A. Sequential Monte Carlo Methods for Multitarget Filtering with Random Finite Sets. IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 1224–1245. [Google Scholar]
- Vo, B.N.; Ma, W.K. The Gaussian Mixture Probability Hypothesis Density Filter. IEEE Trans. Signal Process. 2006, 54, 4091–4104. [Google Scholar] [CrossRef]
- Macagnano, D.; De Abreu, G.T.F. Adaptive Gating for Multitarget Tracking with Gaussian Mixture Filters. IEEE Trans. Signal Process. 2012, 60, 1533–1538. [Google Scholar] [CrossRef]
- Macagnano, D.; De Abreu, G.T.F. Multitarget Tracking with the Cubature Kalman Probability Hypothesis Density Filter. In Proceedings of the International Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 7–10 November 2010; pp. 1455–1459. [Google Scholar]
- Zhang, L.; Wang, T.; Zhang, F.; Xu, D. Cooperative Localization for Multi-Auvs Based On GM-PHD Filters and Information Entropy Theory. Sensors 2017, 17, 2286. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Song, T.L. Improved Bearings-Only Multi-Target Tracking with GM-PHD Filtering. Sensors 2016, 16, 1469. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Wang, Y.; Chen, H.; Zhang, P.; Liang, Y. Adaptive Collaborative Gaussian Mixture Probability Hypothesis Density Filter for Multi-Target Tracking. Sensors 2016, 16, 1666. [Google Scholar] [CrossRef] [PubMed]
- Vo, B.T.; Vo, B.N.; Hoseinnezhad, R.; Mahler, R.P.S. Robust Multi-Bernoulli Filtering. IEEE J. Sel. Top. Signal Process. 2013, 7, 399–409. [Google Scholar] [CrossRef]
- Huber, P.J.; Ronchetti, E.M. Robust Statistics, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Šmídl, V.; Quinn, A. The Variational Bayes Method in Signal Processing; Springer: Heidelberg, Germany, 2006. [Google Scholar]
- Roth, M.; Özkan, E.; Gustafsson, F. A Student’s T Filter for Heavy Tailed Process and Measurement Noise. In Proceedings of the 38th International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, BC, Canada, 26–31 May 2013; pp. 5770–5774. [Google Scholar]
- Huang, Y.; Zhang, Y.; Li, N.; Chambers, J. Robust Student’s T Based Nonlinear Filter and Smoother. IEEE Trans. Aerosp. Electron. Syst. 2017, 52, 2586–2596. [Google Scholar] [CrossRef]
- Straka, O.; Dunik, J. Stochastic Integration Student’s-T Filter. In Proceedings of the 20th International Conference on Information Fusion (FUSION), Xi’an, China, 10–13 July 2017; pp. 1–8. [Google Scholar]
- Tronarp, F.; Hostettler, R.; Särkkä, S. Sigma-Point Filtering for Nonlinear Systems with Non-Additive Heavy-Tailed Noise. In Proceedings of the 19th International Conference on Information Fusion (FUSION), Heidelberg, Germany, 5–8 July 2016; pp. 1859–1866. [Google Scholar]
- Huang, Y.; Zhang, Y.; Li, N.; Naqvi, S.M.; Chambers, J. A Robust Student’s T Based Cubature Filter. In Proceedings of the 19th International Conference on Information Fusion (FUSION), Heidelberg, Germany, 5–8 July 2016; pp. 9–16. [Google Scholar]
- Kotz, S.; Nadarajah, S. Multivariate T-Distributions and their Applications; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Vo, B.T.; Vo, B.N.; Cantoni, A. Analytic Implementations of the Cardinalized Probability Hypothesis Density Filter. IEEE Trans. Signal Process. 2007, 55, 3553–3567. [Google Scholar] [CrossRef]
- Arasaratnam, I.; Haykin, S. Cubature Kalman Filters. IEEE Trans. Autom. Control 2009, 54, 1254–1269. [Google Scholar] [CrossRef]
- Schuhmacher, D.; Vo, B.T.; Vo, B.N. A Consistent Metric for Performance Evaluation of Multi-Object Filters. IEEE Trans. Signal Process. 2008, 56, 3447–3457. [Google Scholar] [CrossRef]
- Chang, G. Robust Kalman Filtering Based on Mahalanobis Distance as Outlier Judging Criterion. J. Geod. 2014, 88, 391–401. [Google Scholar] [CrossRef]
Target Index | Life Time (s) | Initial States (m, m/s, m, m/s) |
---|---|---|
#1 | (1, 70) | [0, 0, 0, −10] |
#2 | (1, 100) | [400, −10, −600, 5] |
#3 | (1, 70) | [−800, 20, −200, −5] |
#4 | (20, 100) | [400, −7, −600, −4] |
#5 | (20, 100) | [400, −2.5, −600, 10] |
#6 | (20, 100) | [0, 7.5, 0, −5] |
#7 | (40, 100) | [−800, 12, −200, 7] |
#8 | (40, 100) | [−200, −3, 800, −10] |
#9 | (60, 100) | [−800, 3, −200, 15] |
#10 | (60, 100) | [−200, −3, 800, −15] |
#11 | (80, 100) | [0, −20, 0, −15] |
#12 | (80, 100) | [−200, 15, 800, −5] |
Clutter Rate | ||||||
---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | 40 | 50 | |
GM-PHD | 0.9217 s | 0.9917 s | 1.0782 s | 1.1253 s | 1.1938 s | 1.2068 s |
STM-PHD | 0.9146 s | 0.9961 s | 1.0780 s | 1.1417 s | 1.2576 s | 1.2486 s |
Target Index | Life Time (s) | Initial States (m, m/s, m, m/s, rad/s) |
---|---|---|
#1 | (1, 100) | [1000, −10, 1500, −10, 2π/(180 × 8)] |
#2 | (10, 100) | [−250, 20, 1000, 3, −2π/(180 × 3)] |
#3 | (10, 100) | [−1500, 11, 250, 10, −2π/(180 × 2)] |
#4 | (10, 66) | [−1500, 43, 250, 0, 0] |
#5 | (20, 80) | [250, 11, 750, 5, 2π/(180 × 4)] |
#6 | (40, 100) | [−250, −12, 1000, −12, 2π/(180 × 2)] |
#7 | (40, 100) | [1000, 0, 1500, −10, 2π/(180 × 4)] |
#8 | (40, 80) | [250, −50, 750, 0, −2π/(180 × 4)] |
#9 | (60, 100) | [1000, −50, 1500, 00, −2π/180 × 4] |
#10 | (60, 100) | [250, −40, 750, 25, 2π/(180 × 4)] |
Clutter Rate | ||||||
---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | 40 | 50 | |
GM-PHD | 1.0142 s | 1.3780 s | 1.8481 s | 2.4988 s | 3.3321 s | 3.9051 s |
STM-PHD | 1.8534 s | 3.3179 s | 5.4081 s | 8.5213 s | 12.9163 s | 16.6113 s |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Chen, S.; Wu, H.; He, R.; Hao, L. A Student’s t Mixture Probability Hypothesis Density Filter for Multi-Target Tracking with Outliers. Sensors 2018, 18, 1095. https://doi.org/10.3390/s18041095
Liu Z, Chen S, Wu H, He R, Hao L. A Student’s t Mixture Probability Hypothesis Density Filter for Multi-Target Tracking with Outliers. Sensors. 2018; 18(4):1095. https://doi.org/10.3390/s18041095
Chicago/Turabian StyleLiu, Zhuowei, Shuxin Chen, Hao Wu, Renke He, and Lin Hao. 2018. "A Student’s t Mixture Probability Hypothesis Density Filter for Multi-Target Tracking with Outliers" Sensors 18, no. 4: 1095. https://doi.org/10.3390/s18041095
APA StyleLiu, Z., Chen, S., Wu, H., He, R., & Hao, L. (2018). A Student’s t Mixture Probability Hypothesis Density Filter for Multi-Target Tracking with Outliers. Sensors, 18(4), 1095. https://doi.org/10.3390/s18041095