Multi-Sensor Data Integration Using Deep Learning for Characterization of Defects in Steel Elements †
<p>Model and photo of the multi-sensor transducer: (<b>a</b>) cross-section; (<b>b</b>) 3D view; (<b>c</b>) photo of the bottom-side, all dimensions are in [mm].</p> "> Figure 2
<p>The utilized measuring system configuration diagram (<b>a</b>) and photo (<b>b</b>). EXC—excitation section; SEN—sensors; AMP—amplifier; MUX—multiplexer; CH—channel; XYZ Scanner—Cartesian coordinate robot; D/A—digital-to-analog converter; µC—microcontroller; PC—personal computer.</p> "> Figure 3
<p>The schematic diagram of the definition of the defect characterization model; FEM—finite element method.</p> "> Figure 4
<p>Utilized FEM model of the transducer: IE—infinite element domain, TD—transducer’s domain, StP—steel plate, MSM—multi-sensor matrix, FeC—ferrite core, EC—excitation coil, D—defect; (<b>a</b>) model view, (<b>b</b>) computation mesh view.</p> "> Figure 5
<p>Selected results of flux distributions obtained during FEM simulations: (<b>a</b>) without defect; (<b>b</b>) with defect; (<b>c</b>) polar plot of the <span class="html-italic">V</span><sub>z</sub> component of the flux sensed by the successive sensors normalized to maximum value.</p> "> Figure 6
<p>Comparison of selected results of magnetic field vector components acquired by all sensors for 1D scan along the 100% defect aligned at 0° to scanning direction obtained during FEM numerical simulations (<b>a</b>) and measurements (<b>b</b>).</p> "> Figure 7
<p>Selected results of reconstruction procedure obtained for: (<b>a</b>) different depth of the defects aligned at 0° (<span class="html-italic">r</span><sub>0</sub>); (<b>b</b>) different orientation angle and depth of 2 mm (<span class="html-italic">d</span><sub>2.0</sub>); the size of each reconstruction is 43 × 43.</p> "> Figure 8
<p>The block diagram of multi-class defect evaluation procedure from single point measurements.</p> "> Figure 9
<p>Schematic view of the deep convolutional neural network (<span class="html-italic">DCNN</span><sub>DND</sub>) architecture for evaluation of defect occurrence; layers: <span class="html-italic">IN</span>—input, <span class="html-italic">C</span>—convolutional, <span class="html-italic">MP</span>—max-pooling, <span class="html-italic">FC</span> & <span class="html-italic">SM</span>—fully connected and softmax, <span class="html-italic">CL</span>—classification; <span class="html-italic">FM</span>—feature maps.</p> "> Figure 10
<p>Visualization of the <span class="html-italic">DCNN</span><sub>DND</sub> network’s third convolutional layer response for random inputs.</p> "> Figure 11
<p>Visualization of the neighborhood based class probability update algorithm for the <span class="html-italic">DCNN</span><sub>DND</sub> case.</p> "> Figure 12
<p>Visualization of the <span class="html-italic">DCNN</span><sub>DND</sub> class evaluation results: (<b>a</b>) before and (<b>b</b>) after utilization of class probability update algorithm; class 0—defect not sensed by the transducer, class 1—defect indicated by the transducer; white dashed line depicts the circumference of the transducer.</p> ">
Abstract
:1. Introduction
2. Matrix Multi-Sensor Transducer
3. Defect Evaluation Procedure
3.1. FEM Computations and Database Construction
3.2. Multi-Label Classification
3.3. Verification of Defect Evaluation Model
3.4. Neighborhood Based Class Probability Update Algorithm
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Dobmann, G. Probability of detection—The approach to combine the probabilistic fracture mechanics with NDT—Where we are? Bad. Nieniszcz. Diag. 2016, 1, 27–33. Available online: http://bnid.pl/wp-content/uploads/2016/12/DobmanG_ProbabilityDetection.pdf (accessed on 7 December 2017).
- Poudel, U.P.; Fu, G.; Ye, J. Structural damage detection using digital video imaging technique and wavelet transformation. J. Sound Vib. 2005, 286, 869–895. [Google Scholar] [CrossRef]
- Szymanik, B.; Psuj, G.; Lopato, P.; Maciusowicz, M.; Herbko, M. Multimodal fatigue progress monitoring of construction steel elements. In Proceedings of the Quantitative InfraRed Thermography Conference, Gdansk, Poland, 4–8 July 2016. [Google Scholar] [CrossRef]
- Rao, B.P.C.; Jayakumar, T. Recent Trends in Electromagnetic NDE Techniques and Future Directions. In Proceedings of the 18th World Conference on Nondestructive Testing, Durban, South Africa, 16–20 April 2012; Available online: http://www.ndt.net/article/wcndt2012/papers/670_wcndtfinal00673.pdf (accessed on 7 December 2017).
- Lopato, P.; Herbko, M. Microwave structural health monitoring sensor for deformation measurement of bended steel structures: Influence of curvature effect. Radioengineering 2017, 26, 1060–1066. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, C.; Li, R.; Cai, M.; Jia, G. Theory and Application of Magnetic Flux Leakage Pipeline Detection. Sensors 2015, 15, 31036–31055. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Shen, X.; Xu, J.; Wang, P.; Tian, G.; Wu, Z. Fast Estimation of Defect Profiles from the Magnetic Flux Leakage Signal Based on a Multi-Power Affine Projection Algorithm. Sensors 2014, 14, 16454–16466. [Google Scholar] [CrossRef] [PubMed]
- Babbar, V.; Clapham, L. Residual magnetic flux leakage: A possible tool for studying pipeline defects. J. Nondes. Eval. 2003, 22, 117–123. [Google Scholar] [CrossRef]
- Chady, T.; Psuj, G.; Kowalczyk, J.; Spychalski, I. Electromagnetic system for nondestructive evaluation of train hollow axles. In Proceedings of the 2013 Far East Forum on Nondestructive Evaluation/Testing: New Technology and Application (FENDT), Jinan, China, 17–20 June 2013; pp. 29–34. [Google Scholar] [CrossRef]
- Le, M.; Lee, J.; Jun, J.; Kim, J.; Moh, S.; Shin, K. Hall sensor array based validation of estimation of crack size in metals using magnetic dipole models. NDT E Int. 2013, 53, 18–25. [Google Scholar] [CrossRef]
- Le, M.; Kim, J.; Yang, D.; Lee, H.; Lee, J. Electromagnetic testing of a welding area using a magnetic sensor array. Int. J. Appl. Electrom. Mech. 2017, 55, 119–124. [Google Scholar] [CrossRef]
- Psuj, G. Magnetic field multi-sensor transducer for detection of defects in steel components. IEEE Trans. Magn. 2017, 53, 1–4. [Google Scholar] [CrossRef]
- Psuj, G.; Biernacki, M.; Kruczyński, K. Application of deep learning procedure to magnetic multi-sensor matrix transducer data for the need of defect characterization in steel elements. In Proceedings of the 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF) Book of Abstracts, Lodz, Poland, 14–16 September 2017. [Google Scholar] [CrossRef]
- Li, Y.; Wilson, J.; Tian, G.Y. Experiment and simulation study of 3D magnetic field sensing for magnetic flux leakage defect characterization. NDT E Int. 2007, 40, 179–184. [Google Scholar] [CrossRef]
- Lo, C.C.H. Characterization of residual stress in ferrous components by magnetic anisotropy measurements using a hall effect sensor array probe. AIP Conf. Proc. 2011, 1335, 1249–1255. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neutral networks: An overview. Neur. Netw. 2005, 61, 85–117. [Google Scholar] [CrossRef] [PubMed]
- Khodayari-Rostamabad, A.; Reilly, J.P.; Nikolova, N.K.; Hare, J.R.; Pasha, S. Machine learning techniques for the analysis of magnetic flux leakage images in pipeline inspection. IEEE Trans. Magn. 2009, 45, 3073–3084. [Google Scholar] [CrossRef]
- Faghih-Roohi, S.; Hajizadeh, S.; Núñez, A.; Babuska, R.; De Schutter, B. Deep convolutional Neural Networks for detection of rail surface defects. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 2584–2589. [Google Scholar] [CrossRef]
- Sikora, R.; Baniukiewicz, P.; Chady, T.; Rucinski, W.; Swiadek, K.; Caryk, M.; Lopato, P. Comparison of selected weld defect extraction methods. AIP Conf. Proc. 2008, 975, 1034–1041. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, Y.; Zhang, D.; Xie, J.; Zhou, Y. Classification of surface defects on steel sheet using convolutional neural networks. Mater. Technol. 2017, 51, 123–131. [Google Scholar] [CrossRef]
- Lopato, P. Automatic defect recognition for pulsed terahertz inspection of basalt fiber reinforced composites. COMPEL Int. J. Comput. Math. Elect. Elect. Eng. 2016, 35, 1346–1359. [Google Scholar] [CrossRef]
- Mery, D.; Arteta, C. Automatic Defect Recognition in X-ray Testing using Computer Vision. In Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017; pp. 1026–1035. [Google Scholar] [CrossRef]
- Zhang, H.; Li, L.; Qiao, K.; Wang, L.; Yan, B.; Li, L.; Hu, G. Image Prediction for Limited-angle Tomography via Deep Learning with Convolutional Neural Network. Available online: https://arxiv.org/abs/1607.08707 (accessed on 7 December 2017).
- Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1798–1828. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Liu, Y.; Alsaadi, F.E. A survey of deep neural network architectures and their applications. Neurocomputing 2017, 234, 11–26. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M.S. Deep learning for visual understanding: A review. Neurocomputing 2016, 187, 27–48. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Review: Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Ngiam, J.; Khosla, A.; Kim, M.; Nam, J.; Lee, H.; Ng, A.Y. Multimodal Deep Learning. In Proceedings of the 28th International Conference on Machine Learning (ICML), Bellevue, WA, USA, 28 June–2 July 2011; pp. 1–8. Available online: http://www.icml-2011.org/papers/399_icmlpaper.pdf (accessed on 7 December 2017).
- Cha, Y.-J.; Choi, W.; Büyüköztürk, O. Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks. Comput-Aided Civ. Inf. Eng. 2017, 32, 361–378. [Google Scholar] [CrossRef]
- Cha, Y.-J.; Choi, W.; Suh, G.; Mahmoudkhani, S.; Büyüköztürk, O. Autonomous Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types. Comput-Aided Civ. Inf. Eng. 2017. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, L.; Li, C.; Han, Z. A high-precision loose strands diagnosis approach for isoelectric line in high-speed railway. IEEE Trans. Ind. Inform. 2017. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Z.; Wang, H.; Núñez, A.; Han, Z. Automatic defect detection of fasteners on the catenary support device using deep convolutional neural network. IEEE Trans. Instrum. Meas. 2018, 67, 257–269. [Google Scholar] [CrossRef]
- Jamshidi, A.; Faghih-Roohi, S.; Hajizadeh, S.; Núñez, A.; Babuska, R.; Dollevoet, R.; Li, Z.; De Schutter, B. A Big Data Analysis Approach for Rail Failure Risk Assessment. Risk Anal. 2017, 37, 1495–1506. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tian, G.Y.; Ward, S. Numerical simulation on magnetic leakage evaluation at high speed. NDT E Int. 2006, 39, 367–373. [Google Scholar]
- Psuj, G.; Chady, T.; Enokizono, M.; Todaka, T. Stress Evaluation in Non-oriented Electrical Steel Samples by Observation of Vector Magnetic Flux Under Static and Rotating Field Conditions. Int. J. Appl. Elect. Mech. 2014, 44, 339–347. [Google Scholar] [CrossRef]
- Zeng, G.L. Fan-beam Image Reconstruction. In Medical Image Reconstruction: A Conceptual Tutorial; Springer: Berlin/Heidelberg, Germany, 2010; pp. 49–66. [Google Scholar]
- Ghosh, P.; Mukhopadhyay, A.; Chanda, A.; Mondal, P.; Akhand, A.; Mukherjee, S.; Nayak, S.K.; Ghosh, S.; Mitra, D.; Ghosh, T.; et al. Application of Cellular automata and Markov-chain model in geospatial environmental modeling—A review. Remote Sens. Appl. Soc. Environ. 2017, 5, 64–77. [Google Scholar] [CrossRef]
Description | Definition | |
---|---|---|
Magnetic field norm (magnitude) | (1) | |
Magnetic field tangential component | (2) | |
Magnetic field normal component | (3) | |
Angle between the normal and tangential components | (4) | |
Angle between the tangential components | (5) |
Defect-free | Defect | |
---|---|---|
Defect-free | 91.57 | 8.43 |
Defect | 18.40 | 81.60 |
Defect r0 | Defect r22.5 | Defect r45 | Defect r67.5 | Defect r90 | |
---|---|---|---|---|---|
Defect r0 | 74.36 | 7.69 | 10.26 | 2.56 | 5.13 |
Defect r22.5 | 12.82 | 79.49 | 7.69 | 0 | 0 |
Defect r45 | 5.13 | 12.82 | 58.97 | 5.13 | 17.95 |
Defect r67.5 | 0 | 0 | 2.56 | 71.80 | 25.64 |
Defect r90 | 0 | 2.56 | 0 | 20.51 | 76.93 |
Defect d0.5 | Defect d1.0 | Defect d1.5 | Defect d2.0 | |
---|---|---|---|---|
Defect d0.5 | 82.61 | 10.87 | 6.52 | 0 |
Defect d1.0 | 21.74 | 54.35 | 19.56 | 4.35 |
Defect d1.5 | 2.17 | 19.57 | 67.39 | 10.87 |
Defect d2.0 | 6.52 | 6.53 | 13.04 | 73.91 |
Defect-free | Defect | |
---|---|---|
Defect-free | 95.12 | 4.88 |
Defect | 5.99 | 94.01 |
Defect r0 | Defect r22.5 | Defect r45 | Defect r67.5 | Defect r90 | |
---|---|---|---|---|---|
Defect r0 | 100 | 0 | 0 | 0 | 0 |
Defect r22.5 | 0 | 100 | 0 | 0 | 0 |
Defect r45 | 0 | 0 | 92.31 | 5.13 | 2.56 |
Defect r67.5 | 0 | 0 | 2.56 | 97.44 | 0 |
Defect r90 | 0 | 0 | 0 | 0 | 100 |
Defect d0.5 | Defect d1.0 | Defect d1.5 | Defect d2.0 | |
---|---|---|---|---|
Defect d0.5 | 95.65 | 2.18 | 2.17 | 0 |
Defect d1.0 | 2.17 | 93.48 | 4.35 | 0 |
Defect d1.5 | 0 | 6.52 | 93.48 | 0 |
Defect d2.0 | 6.52 | 0 | 4.35 | 89.13 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Psuj, G. Multi-Sensor Data Integration Using Deep Learning for Characterization of Defects in Steel Elements. Sensors 2018, 18, 292. https://doi.org/10.3390/s18010292
Psuj G. Multi-Sensor Data Integration Using Deep Learning for Characterization of Defects in Steel Elements. Sensors. 2018; 18(1):292. https://doi.org/10.3390/s18010292
Chicago/Turabian StylePsuj, Grzegorz. 2018. "Multi-Sensor Data Integration Using Deep Learning for Characterization of Defects in Steel Elements" Sensors 18, no. 1: 292. https://doi.org/10.3390/s18010292
APA StylePsuj, G. (2018). Multi-Sensor Data Integration Using Deep Learning for Characterization of Defects in Steel Elements. Sensors, 18(1), 292. https://doi.org/10.3390/s18010292