Small Imaging Depth LIDAR and DCNN-Based Localization for Automated Guided Vehicle †
<p>Example of an assumed scenario for Automated Guided Vehicles (AGVs). An AGV equipped with a small imaging depth LIDAR automatically approaches a pallet and transports the pallet to another location.</p> "> Figure 2
<p>Third prototype of our LIDAR, having only one laser diode and one sensor chip. This feature enables a small-sized prototype. The size is similar to that of a small 500-mL plastic bottle, and the LIDAR has a six-facet polygonal mirror.</p> "> Figure 3
<p>Examples of the output of the prototype LIDAR with the reference image in an outdoor environment: (right, top) range image data; (right, center) peak intensity image data; (right, bottom) monocular image data; (left) reference image captured by the camera.</p> "> Figure 4
<p>Prototype sensor chip.</p> "> Figure 5
<p>Dense point cloud of Single-Photon Avalanche Diode (SPAD) LIDAR in an outdoor road environment.</p> "> Figure 6
<p>SPAD DCNN model.</p> "> Figure 7
<p>Assumed scenario for evaluation. An AGV moves to the target along various paths. The trajectories are similar in some cases and dissimilar in others.</p> "> Figure 8
<p>Experimental setup: (<b>left</b>) SPAD LIDAR setup on robotic wheelchair; (<b>right</b>) pallet position as the target and origin coordinate for localization.</p> "> Figure 9
<p>Experimental setup for Experiment 1: (<b>left</b>) overview of trajectories; (<b>right</b>) ground truth trajectories captured by motion capture system.</p> "> Figure 10
<p>Test error of “SPAD DCNN” localization (red lines) and “conventional” localization (green lines). The SPAD DCNN has a lower test error in all evaluations. The error difference in the 10,000th epoch is improved by fusion of the SPAD LIDAR data.</p> "> Figure 11
<p>Experimental setup for Experiment 2: (<b>left</b>) trajectory overview; (<b>right</b>) ground truth trajectories captured by motion capture system.</p> "> Figure 12
<p>Classification results.</p> "> Figure 13
<p>Experimental setup for Experiment 3: (<b>left</b>) overview of trajectories of RC2; (<b>right</b>) ground truth trajectories captured by motion capture system.</p> "> Figure 14
<p>Regression result.</p> "> Figure 15
<p>Classification result.</p> "> Figure 16
<p>Impact of each SPAD LIDAR data type in Experiment 3.</p> ">
Abstract
:1. Introduction
2. Related Work
3. SPAD LIDAR
4. SPAD DCNN
5. Experiments
5.1. Experiment 1: Localization Accuracy for Similar Trajectories
5.2. Experiment 2: Classification Accuracy for Similar Trajectories
5.3. Experiment 3: Localization and Classification Accuracy for Dissimilar Trajectories
6. Conclusions
Author Contributions
Conflicts of Interest
References
- Velodyne White Paper. Available online: http://velodyneLIDAR.com/docs/papers/ (accessed on 1 December 2017).
- Kimoto, K.; Asada, N.; Mori, T.; Hara, Y.; Ohya, A.; Yuta, S. Development of Small Size 3D LIDAR. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 4620–4626. [Google Scholar]
- Maddern, W.; Newman, P. Real-time probabilistic fusion of sparse 3D LIDAR and dense stereo. In Proceedings of the IEEE International Workshop on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 2181–2188. [Google Scholar]
- Mees, O.; Eitel, A.; Burgard, W. Choosing Smartly: Adaptive Multimodal Fusion for Object Detection in Changing Environments. In Proceedings of the IEEE International Workshop on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 151–156. [Google Scholar]
- Ito, S.; Hiratsuka, S.; Ohta, M.; Matsubara, H.; Ogawa, M. SPAD DCNN: Localization with Small Imaging LIDAR and DCNN. In Proceedings of the IEEE International Workshop on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017. [Google Scholar]
- Goeddel, R.; Olson, E. Learning Semantic Place Labels from Occupancy Grids using CNNs. In Proceedings of the IEEE International Workshop on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 3999–4004. [Google Scholar]
- Costante, G.; Mancini, M.; Valigi, P. Exploring Representation Learning with CNNs for Frame to Frame Ego-Motion Estimation. IEEE Robot. Autom. 2016, 1, 18–25. [Google Scholar] [CrossRef]
- Kendall, A.; Cipolla, R. Modelling Uncertainty in Deep Learning for Camera Relocalization. IEEE Robot. Autom. 2016. [Google Scholar] [CrossRef]
- Zoph, B.; Le, Q.V. Neural Architecture Search with Reinforcement learning. In Proceedings of the 6th International Conference on Learning Representations, Vancouver, BC, Canada, 27 October 2017. [Google Scholar]
- Real, E.; Moore, S.; Selle, A.; Saxena, S.; Suematsu, Y.L.; Tan, J.; Le, Q.; Kurakin, A. Large-Scale Evolution of Image Classifiers. In Proceedings of the 34th International Conference on Machine Learning (ICML 2017), Sydney, Australia, 6–11 August 2017. [Google Scholar]
- Kinect for Xbox One. Available online: https://www.xbox.com/en-US/xbox-one/accessories/kinect (accessed on 1 December 2017).
- Gokturk, B.S.; Yalcin, H.; Bamji, C. A Time-Of-Flight Depth Sensor System Description, Issues and Solutions. In Proceedings of the CVPRW ’04. Conference on Computer Vision and Pattern Recognition Workshop, Washington, DC, USA, 27 June–2 July 2004. [Google Scholar]
- Zhengyou, Z. Microsoft Kinect Sensor and Its Effect. IEEE Multimedia 2012, 19, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Micro Photon Devices. Available online: http://www.micro-photon-devices.com/ (accessed on 1 December 2017).
- Ringbeck, T.; Moller, T.; Hagebeuker, B. Multidimensional Measurement by using 3-D PMD Sensors. Adv. Radio Sci. 2007, 5, 135–146. [Google Scholar] [CrossRef]
- Niclass, C.; Rochas, A.; Besse, P.; Charbon, E. Design and Characterization of a CMOS 3-D Image Sensor based on Single Photon Avalanche Diodes. IEEE J. Solid-State Circuits 2005, 40, 1847–1854. [Google Scholar] [CrossRef]
- FBK-IRIS Time-of-Flight 3D Cameras. Available online: https://iris.fbk.eu/technologies/time-flight-3d-cameras (accessed on 1 December 2017).
- Urmson, C.; Anhalt, J.; Bagnell, D.; Baker, C.; Bittner, R.; Clark, M.N.; Dolan, J.; Duggins, D.; Galatali, T.; Geyer, C.; et al. Autonomous Driving in Urban Environments: Boss and the Urban Challenge. J. Field Robot. 2009, 25, 1–59. [Google Scholar]
- Montemerlo, M.; Becker, J.; Bhat, S.; Dahlkamp, H.; Dolgov, D.; Ettinger, S.; Haehnel, D.; Hilden, T.; Hoffmann, G.; Huhnke, B.; et al. Junior: The Stanford Entry in the Urban Challenge. In The DARPA Urban Challenge; Buehler, M., Iagnemma, K., Singh, S., Eds.; Springer: Berlin, Germany, 2009; pp. 91–123. [Google Scholar]
- John, L.; Jonathan, H.; Seth, T.; Campbell, S.; Fiore, F.; Fletcher, L.; Frazzoli, E.; Huang, A.; Karaman, S.; Koch, O.; et al. A Perception-Driven Autonomous Urban Vehicle. In The DARPA Urban Challenge; Buehler, M., Iagnemma, K., Singh, S., Eds.; Springer: Berlin, Germany, 2009; pp. 163–230. [Google Scholar]
- Arroyo, R.; Alcantarilla, P.F.; Bergasa, L.M.; Romera, E. Fusion and Binarization of CNN Features for Robust Topological Localization across Seasons. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016. [Google Scholar]
- Kendall, A.; Grimes, M.; Cipolla, R. PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Walch, F.; Hazirbas, C.; Leal-Taxie, L.; Sattler, T.; Hilsenbeck, S.; Cremers, D. Image-based Localization using LSTMs for Structured Feature Correlation. arXiv, 2016; arXiv:1611.07890. [Google Scholar]
- Cova, S.; Longoni, A.; Andreoni, A. Towards Picosecond Resolution with Single Photon Avalanche Diodes. Rev. Sci. Instrum. 1981, 52, 408–412. [Google Scholar] [CrossRef]
- Rochas, A.; Gosch, M.; Serov, A.; Besse, P.A.; Popovicet, R.S.; Lasseral, T.; Rigler, R. First Fully Integrated 2-D Array of Single-Photon Detectors in Standard CMOS Technology. IEEE Photon. Technol. Lett. 2003, 15, 963–965. [Google Scholar] [CrossRef]
- Niclass, C.; Soga, M.; Matsubara, H.; Aoyagi, I.; Kato, S.; Kagami, M. A 100m-Range 10-Frame/s 340x96-Pixel Time-of-Flight Depth Sensor in 0.18 μm CMOS. IEEE J. Solid-State Circuits 2013, 48, 559–572. [Google Scholar] [CrossRef]
- Niclass, C.; Soga, M.; Matsubara, H.; Ogawa, M.; Kagami, M. A 0.18um CMOS SoC for a 100-m-Range 10-Frame/s 200x96-Pixel Time-of-Flight Depth Sensor. IEEE J. Solid-State Circuits 2014, 49, 315–330. [Google Scholar] [CrossRef]
- Morgan, Q.; Ken, C.; Brian, G.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An Open-Source Robot Operating System. In Proceedings of the International Conference on Robotics and Automation, St. Louis, MO, USA, 12–17 May 2009. [Google Scholar]
- Ian, G.; Yoshua, B.; Aaron, C. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Girshick, R. Fast-R-CNN. arXiv, 2015; arXiv:1504.08083. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Toward Real-Time Object Detection with Region Proposal Networks. arXiv, 2015; arXiv:1506.01497. [Google Scholar]
- Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A Benchmark for the Evaluation of RGB-D SLAM Systems. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vilamoura, Portugal, 7–12 October 2012. [Google Scholar]
- VICON Motion Capture System. Available online: https://www.vicon.com/products/vicon-devices/ (accessed on 1 December 2017).
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv, 2016; arXiv:1603.04467. [Google Scholar]
Specifications | |
---|---|
Pixel Resolution | 202 × 96 [Pixel] |
FOV | 55 × 9 [deg] |
Frame rate | 10 [frames/second] |
Size | W 0.067 × H 0.073 × D 0.177 [m] |
Range | 70 [m] |
Wavelength | 905 [nm] |
Frequency | 133 [kHz] |
Peak power | 45 [W] |
TOF measurement | Pulse type |
Laser | Class 1 laser |
Distance resolution | 0.035 [m] (short-range mode), 0.070 [m] (long-range mode) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ito, S.; Hiratsuka, S.; Ohta, M.; Matsubara, H.; Ogawa, M. Small Imaging Depth LIDAR and DCNN-Based Localization for Automated Guided Vehicle. Sensors 2018, 18, 177. https://doi.org/10.3390/s18010177
Ito S, Hiratsuka S, Ohta M, Matsubara H, Ogawa M. Small Imaging Depth LIDAR and DCNN-Based Localization for Automated Guided Vehicle. Sensors. 2018; 18(1):177. https://doi.org/10.3390/s18010177
Chicago/Turabian StyleIto, Seigo, Shigeyoshi Hiratsuka, Mitsuhiko Ohta, Hiroyuki Matsubara, and Masaru Ogawa. 2018. "Small Imaging Depth LIDAR and DCNN-Based Localization for Automated Guided Vehicle" Sensors 18, no. 1: 177. https://doi.org/10.3390/s18010177
APA StyleIto, S., Hiratsuka, S., Ohta, M., Matsubara, H., & Ogawa, M. (2018). Small Imaging Depth LIDAR and DCNN-Based Localization for Automated Guided Vehicle. Sensors, 18(1), 177. https://doi.org/10.3390/s18010177