Potential of Sub-GHz Wireless for Future IoT Wearables and Design of Compact 915 MHz Antenna
<p>Wrist-worn wireless SpO2 sensor in final configuration with corresponding system block diagram.</p> "> Figure 2
<p>IoT sensor (Tx) placed on the human wrist communicating with a remote receiver device (Rx).</p> "> Figure 3
<p>Illustration of the wrist-worn SpO2 RFIC transceiver activity in a successful data transmission case and in a non-successful data transmission case.</p> "> Figure 4
<p>Histograms of the average current consumption: (<b>a</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi mathvariant="italic">frame</mi> </mrow> </msub> <mo> </mo> <mo>=</mo> <mo> </mo> </mrow> </semantics> </math>1 s; (<b>b</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi mathvariant="italic">frame</mi> </mrow> </msub> <mo> </mo> <mo>=</mo> <mo> </mo> </mrow> </semantics> </math> 1 min; (<b>c</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi mathvariant="italic">frame</mi> </mrow> </msub> <mo> </mo> <mo>=</mo> <mo> </mo> </mrow> </semantics> </math> 1 h; (<b>d</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi mathvariant="italic">frame</mi> </mrow> </msub> <mo> </mo> <mo>=</mo> <mo> </mo> </mrow> </semantics> </math> 1 day.</p> "> Figure 5
<p>Working principle of SpO2 Sensor.</p> "> Figure 6
<p>Wrist-worn wireless SpO2 sensor: (<b>a</b>) Exploded view of the Sensor Device; (<b>b</b>) Sensor device on voxel-based phantom arm.</p> "> Figure 7
<p>(<b>a</b>) Geometry of the proposed antenna: top view (<b>Left</b> side) and side view cross-section (<b>Right</b> side not to scale); (<b>b</b>) Improving antenna-body isolation.</p> "> Figure 8
<p>Simulated |S<sub>11</sub>|: (<b>a</b>) Simulated |S<sub>11</sub>| with parametric sweep of <span class="html-italic">l</span><sub>CD</sub> (<span class="html-italic">l</span><sub>CE</sub> fixed to 8 mm) in free- space; (<b>b</b>) Simulated |S<sub>11</sub>| with sweep of <span class="html-italic">l</span><sub>CE</sub> (<span class="html-italic">l</span><sub>CD</sub> fixed to 81 mm) in free-space; (<b>c</b>) Simulated |S<sub>11</sub>| with the final structure in free-space (dashed blue line) and on-wrist (solid red line).</p> "> Figure 8 Cont.
<p>Simulated |S<sub>11</sub>|: (<b>a</b>) Simulated |S<sub>11</sub>| with parametric sweep of <span class="html-italic">l</span><sub>CD</sub> (<span class="html-italic">l</span><sub>CE</sub> fixed to 8 mm) in free- space; (<b>b</b>) Simulated |S<sub>11</sub>| with sweep of <span class="html-italic">l</span><sub>CE</sub> (<span class="html-italic">l</span><sub>CD</sub> fixed to 81 mm) in free-space; (<b>c</b>) Simulated |S<sub>11</sub>| with the final structure in free-space (dashed blue line) and on-wrist (solid red line).</p> "> Figure 9
<p>π-type matching network implemented in the sensor device.</p> "> Figure 10
<p>Fabricated wrist-worn wireless SpO2 sensor prototype: (<b>a</b>) top view with no top enclosure; (<b>b</b>) bottom view; (<b>c</b>) antenna PCB bottom view.</p> "> Figure 10 Cont.
<p>Fabricated wrist-worn wireless SpO2 sensor prototype: (<b>a</b>) top view with no top enclosure; (<b>b</b>) bottom view; (<b>c</b>) antenna PCB bottom view.</p> "> Figure 11
<p>Impedance Matching: (<b>a</b>) Smith-Chart plot of the antenna impedance without matching network (solid red line), with the matching network on-phantom (dashed green line) and with the matching network in free-space (dotted blue line); (<b>b</b>) |S<sub>11</sub>| plot of the antenna impedance without matching network (solid red line), with the matching network on-phantom (dashed green line) and with the matching network in free-space (dotted blue line).</p> "> Figure 12
<p>Radiation pattern measurements: (<b>a</b>) measurement setup in free-space scenario; (<b>b</b>) measured 3D radiation pattern of the antenna system in free-space; (<b>c</b>) simulated 3D radiation pattern of the antenna system in free-space.</p> "> Figure 13
<p>(<b>a</b>) antenna measurement setup on IXB-063 phantom column scenario; (<b>b</b>) measured 3D radiation pattern of the antenna system placed on IXB-063 phantom column; (<b>c</b>) simulated 3D radiation pattern of the antenna system placed on IXB-063 phantom column.</p> ">
Abstract
:1. Introduction
2. Comparison of Wireless Performance in the 915 MHz and 2.45 GHz ISM Bands
2.1. Wireless Link Characteristics
2.2. DC Power Consumption
2.2.1. Wireless Protocols
2.2.2. Commercial RF Integrated Circuit Radio Transceivers
3. System Design
3.1. SpO2 Sensor Operation
3.2. System Architecture and Electromagnetic Model
3.3. Antenna Topology
4. Simulation Results
4.1. Return Loss
4.2. Impedance Bandwidth Improvement
5. Prototype Fabrication and Measurements
5.1. Prototype Fabrication
5.2. Measured Impedance Characteristics
5.3. Radiation Pattern
6. Discussion
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gen. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef]
- Number of Connected Wearable Devices Worldwide from 2016 to 2021 (in Millions). Available online: https://www.statista.com/ (accessed on 2 August 2017).
- Wearable Device Sales Revenue Worldwide from 2015 to 2021 (in Billion U.S. Dollars). Available online: https://www.statista.com/ (accessed on 2 August 2017).
- Global Wearable Medical Devices Market—Growth, Trends and Forecasts (2017–2022). Available online: https://www.mordorintelligence.com/ (accessed on 30 August 2017).
- Polar M430. Available online: https://www.polar.com/us-en (accessed on 16 November 2017).
- Fitbit Charge 2. Available online: https://www.fitbit.com/ie/home (accessed on 16 November 2017).
- Tickr X Heart Rate Monitor. Available online: https://eu.wahoofitness.com/ (accessed on 16 November 2017).
- Move HR Sweat. Available online: https://welcome.moov.cc/ (accessed on 16 November 2017).
- HUAWEI Band 2 Pro. Available online: http://consumer.huawei.com/en/ (accessed on 16 November 2017).
- Stankovic, J.; Cao, Q.; Doan, T.; Fang, L.; He, Z.; Kiran, R.; Lin, S.; Son, S.; Stoleru, R.; Wood, A. Wireless sensor networks for in-home healthcare: Potential and challenges. In Proceedings of the High Confidence Medical Device Software and Systems (HCMDSS) Workshop, Philadelphia, PA, USA, 2–3 June 2005. [Google Scholar]
- Soh, P.J.; Vandenbosch, G.A.; Mercuri, M.; Schreurs, D.M.-P. Wearable wireless health monitoring: Current developments, challenges, and future trends. IEEE Microw. Mag. 2015, 16, 55–70. [Google Scholar] [CrossRef]
- Eroglu, K. The worldwide approval status for 900 MHz and 2.4 GHz spread spectrum radio products. In Proceedings of the IEEE International Symposium on Electromagnetic Compatibility, Denver, CO, USA, 24–28 August 1998; pp. 1131–1135. [Google Scholar]
- Bluetooth BR/EDR: Point-to-Point. Available online: https://www.bluetooth.com/ (accessed on 30 August 2017).
- ZigBee Alliance: Zigbee Health Care. Available online: http://www.zigbee.org/ (accessed on 30 August 2017).
- Cisco Aironet 3600 Series Access Point and New FCC Guidelines. Available online: https://www.cisco.com/ (accessed on 30 August 2017).
- Federal Communications Commission: Medical Device Radiocommunications Service (MedRadio). Available online: https://www.fcc.gov/ (accessed on 30 August 2017).
- Electronic Communications Committee. The European table of frequency allocations and applications in the frequency range 8.3 kHz to 3000 GHz (ECA table). In Proceedings of the European Conference of Postal and Telecommunications Administrations; Electronic Communications Committee: Copenhagen, Denmark, 2013. [Google Scholar]
- Su, S.-W.; Hsieh, Y.-T. Integrated metal-frame antenna for smartwatch wearable device. IEEE Trans. Antennas Propag. 2015, 63, 3301–3305. [Google Scholar] [CrossRef]
- Wu, D.; Cheung, S. A Cavity-Backed Annular Slot Antenna with High Efficiency for Smartwatches with Metallic Housing. IEEE Trans. Antennas Propag. 2017, 65, 3756–3761. [Google Scholar] [CrossRef]
- Wu, C.H.; Wong, K.L.; Lin, Y.C.; Su, S.W. Internal shorted monopole antenna for the watch-type wireless communication device for Bluetooth operation. Microw. Opt. Technol. Lett. 2007, 49, 942–946. [Google Scholar] [CrossRef]
- Zhao, K.; Ying, Z.; He, S. Antenna designs of smart watch for cellular communications by using metal belt. In Proceedings of the IEEE 2015 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal, 13–17 April 2015; pp. 1–5. [Google Scholar]
- Yazdandoost, K.Y.; Kohno, R. UWB antenna for wireless body area network. In Proceedings of the Asia-Pacific Microwave Conference, Yokohama, Japan, 12–15 December 2006; pp. 1647–1652. [Google Scholar]
- Cotton, S.L.; D’Errico, R.; Oestges, C. A review of radio channel models for body centric communications. Radio Sci. 2014, 49, 371–388. [Google Scholar] [CrossRef] [PubMed]
- Cavallari, R.; Martelli, F.; Rosini, R.; Buratti, C.; Verdone, R. A survey on wireless body area networks: Technologies and design challenges. IEEE Commun. Surv. Tutor. 2014, 16, 1635–1657. [Google Scholar] [CrossRef]
- IEEE 802.15 WPAN™ Task Group 6 (TG6) Body Area Networks. Available online: http://www.ieee802.org/ (accessed on 30 August 2017).
- Viittala, H.; Hämäläinen, M.; Iinatti, J. Different experimental WBAN channel models and IEEE802. 15.6 models: Comparison and effects. In Proceedings of the 2nd International Symposium on Applied Sciences in Biomedical and Communication Technologies, Bratislava, Slovakia, 24–27 November 2009; pp. 1–5. [Google Scholar]
- Elbert, B.R. Introduction to Satellite Communication; Artech House: Norwood, MA, USA, 2008. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1997. [Google Scholar]
- Harrington, R.F. Effect of antenna size on gain, bandwidth, and efficiency. J. Res. Natl. Bur. Stand. 1960, 64, 1–12. [Google Scholar] [CrossRef]
- Friis, H.T. A note on a simple transmission formula. Proc. IRE 1946, 34, 254–256. [Google Scholar] [CrossRef]
- Howitt, I.; Gutierrez, J.A. IEEE 802.15. 4 low rate-wireless personal area network coexistence issues. In Proceedings of the 2003 IEEE Wireless Communications and Networking, New Orleans, LA, USA, 16–20 March 2003; pp. 1481–1486. [Google Scholar]
- Bluetooth Technology Website: Bluetooth Core Specification v 5.0. Available online: https://www.bluetooth.org/ (accessed on 30 August 2017).
- Microsemi: ZL70550 Datasheet Ultra-Low-Power Sub-GHz RF Transceiver. Available online: https://www.microsemi.com/ (accessed on 30 August 2017).
- Different Wi-Fi Protocols and Data Rates. Available online: https://www.intel.com/ (accessed on 30 August 2017).
- Sun, W.; Choi, M.; Choi, S. IEEE 802.11 ah: A long range 802.11 WLAN at sub 1 GHz. J. ICT Stand. 2013, 1, 83–108. [Google Scholar] [CrossRef]
- ANT™: The Protocol. Available online: https://www.thisisant.com/ (accessed on 30 August 2017).
- Adelantado, F.; Vilajosana, X.; Tuset-Peiro, P.; Martinez, B.; Melia-Segui, J.; Watteyne, T. Understanding the limits of LoRaWAN. IEEE Commun. Mag. 2017, 55, 34–40. [Google Scholar] [CrossRef]
- SX1276/77/78/79-137 MHz to 1020 MHz Low Power Long Range Transceiver. Available online: http://www.semtech.com/ (accessed on 14 November 2017).
- EPC Compliant Class-1 Generation-2 UHF RFID Devices Conformance Requirements. Available online: https://www.gs1.org/ (accessed on 15 November 2017).
- Dobkin, D.M. The rf in RFID: Uhf RFID in Practice; Newnes: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Bluetooth LE: Point-to-Point. Available online: https://www.bluetooth.com/ (accessed on 30 August 2017).
- Wi-Fi Alliance: Discover Wi-Fi. Available online: https://www.wi-fi.org/ (accessed on 30 August 2017).
- Wi-Fi Alliance: Wi-Fi HaLow. Available online: https://www.wi-fi.org/ (accessed on 21 December 2017).
- Karvonen, H.; Hämäläinen, M.; Iinatti, J.; Pomalaza-Ráez, C. Coexistence of wireless technologies in medical scenarios. In Proceedings of the European Conference on Networks and Communications, Oulu, Finland, 12–15 June 2017; pp. 1–5. [Google Scholar]
- DA14580 Bluetooth Low Energy 4.2 SoC. Available online: https://www.dialog-semiconductor.com (accessed on 8 December 2017).
- Texas Instruments: A True System-on-Chip Solution for 2.4-GHz IEEE 802.15.4 and ZigBee Applications. Available online: http://www.ti.com/lit/ds/symlink/cc2530.pdf (accessed on 30 August 2017).
- Microchip. MRF24WB0MA/MRF24WB0MB Data Sheet 2.4 GHz IEEE 802.11b™; Microchip Technology Inc.: Chandler, AZ, USA, 2010. [Google Scholar]
- Dynastream Innovations Inc.: C7 RF Transceiver Module. Available online: https://www.thisisant.com/ (accessed on 30 August 2017).
- RN2483 Low-Power Long Range LoRa® Technology Transceiver Module. Available online: http://www.microchip.com/ (accessed on 15 November 2017).
- RF430F5978 MSP430™ System-in-Package With Sub-1-GHz Transceiver and 3D LF Wake-up and Transponder Interface. Available online: http://www.ti.com (accessed on 15 November 2017).
- Marinkovic, S.J.; Popovici, E.M.; Spagnol, C.; Faul, S.; Marnane, W.P. Energy-efficient low duty cycle MAC protocol for wireless body area networks. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Omeni, O.; Wong, A.C.W.; Burdett, A.J.; Toumazou, C. Energy Efficient Medium Access Protocol for Wireless Medical Body Area Sensor Networks. IEEE Trans. Biomed. Circuits Syst. 2008, 2, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Polastre, J.; Hill, J.; Culler, D. Versatile low power media access for wireless sensor networks. In Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems; ACM: Baltimore, MD, USA, 2004; pp. 95–107. [Google Scholar]
- Zorzi, F.; Stojanovic, M.; Zorzi, M. On the effects of node density and duty cycle on energy efficiency in underwater networks. In Proceedings of the OCEANS 2010 IEEE, Sydney, Australia, 24–27 May 2010; pp. 1–6. [Google Scholar]
- Tan, H.X.; Chan, M.C. A2-MAC: An Adaptive, Anycast MAC Protocol for Wireless Sensor Networks. In Proceedings of the 2010 IEEE Wireless Communication and Networking Conference, Sydney, Australia, 18–21 April 2010; pp. 1–6. [Google Scholar]
- CC253x System-on-Chip Solution for 2.4-GHz IEEE 802.15.4 and ZigBee® Applications CC2540/41 System-on-Chip Solution for 2.4-GHz Bluetooth® Low Energy Applications User’s Guide. Available online: http://www.ti.com (accessed on 4 December 2017).
- Application Note AN114 Z-Stack Duty Cycle Analysis. Available online: www.ti.com (accessed on 6 December 2017).
- Texas Instruments: 2.4-GHz Bluetooth™ Low Energy and Proprietary System-on-Chip. Available online: http://www.ti.com/ (accessed on 30 August 2017).
- AN1200.23 SX1272 Settings for LoRaWAN. Available online: http://www.semtech.com (accessed on 4 December 2017).
- 1- and 8-Channel ANT™ RF Network Processors. Available online: http://www.ti.com/ (accessed on 4 December 2017).
- Kalansuriya, P.; Bhattacharyya, R.; Sarma, S. A novel communication method for semi-passive RFID based sensors. In Proceedings of the 2014 IEEE International Conference on Communications (ICC), Sydney, Australia, 10–14 June 2014; pp. 5902–5907. [Google Scholar]
- SL13A Smart Sensory Tag Chip For Unique Identification, Monitoring and Data Logging. Available online: http://ams.com/eng (accessed on 6 December 2017).
- Schwartz, M. Mobile Wireless Communications; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Preejith, S.P.; Hajare, R.; Joseph, J.; Sivaprakasam, M. High altitude study on finger reflectance SpO2. In Proceedings of the 2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Rochester, MN, USA, 7–10 May 2017; pp. 198–203. [Google Scholar]
- ANSYS: ANSYS Electronics Desktop v.18.0. Available online: http://www.ansys.com/ (accessed on 30 August 2017).
- Soras, C.; Karaboikis, M.; Tsachtsiris, G.; Makios, V. Analysis and design of an inverted-F antenna printed on a PCMCIA card for the 2.4 GHz ISM band. IEEE Antennas Propag. Mag. 2002, 44, 37–44. [Google Scholar] [CrossRef]
- Salonen, P.; Sydanheimo, L.; Keskilammi, M.; Kivikoski, M. A small planar inverted-F antenna for wearable applications. In Proceedings of the Third International Symposium on Wearable Computers, San Francisco, CA, USA, 18–19 October 1999; pp. 95–100. [Google Scholar]
- Designer 8.0. Available online: http://www.ansys.com/ (accessed on 16 November 2017).
- Buckley, J.L.; McCarthy, K.G.; Gaetano, D.; Loizou, L.; O’Flynn, B.; O’Mathuna, C. Design of a compact, fully-autonomous 433 MHz tunable antenna for wearable wireless sensor applications. IET Microw. Antennas Propag. 2016, 11, 548–556. [Google Scholar] [CrossRef]
- Ansys Designer 6.0. Available online: http://www.ansys.com (accessed on 21 December 2017).
- American Technical Ceramics: ATC 600L Ultra-Low ESR, High Q, NPO RF & Microwave Capacitors. Available online: http://atceramics.com/ (accessed on 31 August 2017).
- American Technical Ceramics: Inductor Products. Available online: http://www.atceramics.com/ (accessed on 31 August 2017).
- Isola: Isola 370HR High Performance Laminate and Prepreg. Available online: http://www.isola-group.com/ (accessed on 30 August 2017).
- INDEXSAR: IXB-063 and IXB-103 Phantom Columns. Available online: https://indexsar.com/ (accessed on 30 August 2017).
- ETS-LINDGREN: AMS-8050 Antenna Measurement System. Available online: http://www.ets-lindgren.com/ (accessed on 30 August 2017).
Parameter | Name (Units) | 915 MHz ISM Band | 2.45 GHz ISM Band | ∆ (dB) |
---|---|---|---|---|
Transmit Power (dBm) | 0 | 0 | 0 | |
FSPL | Free-Space Path Loss (dB) | 41.22 | 49.78 | 8.6 |
(1) | Calculated Tx Antenna Gain (dBi) | 0.09 | 5.48 | 5.4 |
1 | Rx Antenna Gain (dBi) | 0 | 0, +3 | 0, +3 |
(2) | Calculated Total Received Power (dBm) | 41.13 | 44.3, 41.3 | 3.16, 0.16 |
Protocol | Operation Frequency Band (MHz) | Maximum Data Rate (kbps) | Typical Communication Range (m) | Topology | Ref. |
---|---|---|---|---|---|
Bluetooth BR/EDR | 2400–2483.5 | 2100 | 10 | P2P | [32] |
BLE | 2400–2483.5 | 2000 | 10 | P2P; Star; Mesh | [32] |
ZigBee | 400–470; 800–960; 2400–2500 | 250 | 100 | P2P; Star; Mesh | [14] |
Z-Star | 779–965 | 200 | 100 | P2P; Star; Mesh | [33] |
WiFi | 2400–2500; 5725–5875 | 54 | 30 | Star | [15,34] |
HaLow | 755–928 | 8670 | 100 | Star | [35] |
ANT/ANT+ | 2400–2457 | 60 | 5 | P2P; Star; Mesh | [36] |
LoRa | 135–175, 410–525, 779–787, 863–869, 902–928 | 300 | 2000–5000 | Star | [37,38] |
UHF RFID | 860–960 MHz | 640 | 15 | Star | [39,40] |
Wireless Protocol | Output Power (dBm) | Typical Current Consumption in RX Mode (mA) | Typical Current Consumption in TX Mode 1 (mA) | Typical Current Consumption in Sleep-Mode (μA) | RFIC Ref |
---|---|---|---|---|---|
BLE | 0 | 3.7 | 3.4 | 0.48 | [45] |
ZigBee | 28 to 4.5 | 27 | 28 | 0.2 | [46] |
Z-star | 25 to 0 | 2.4 | 5.3 | 0.01 | [33] |
WiFi 2 | 0 to 10 | 115 | 115 | 250 | [47] |
ANT/ANT+ 2 | 6 to 4 | 23.7 | 28.8 | 0.5 | [48] |
LoRa | 4 to 14 | 9.9 | 21.2 | 2.6 | [38,49] |
UHF RFID | to 12 | 18 | 18 | 100 | [50] |
Protocol | ACK Length (bits) | Data Packet Length (bits) | Data Rate (kbps) | (ms) | (ms) |
---|---|---|---|---|---|
Z-Star [33] | 176 | 232 | 50 | 3.52 | 4.64 |
ZigBee [56,57] | 88 | 144 | 250 | 0.352 | 0.576 |
BLE [56,58] | 80 | 160 | 1000 | 0.08 | 0.160 |
LoRa [38,59] | 120 | 176 | 10.9 | 11 | 16.1 |
ANT [48,60] | 48 | 88 | 13.8 | 3.48 | 6.38 |
UHF RFID [40,47,61,62] | 22 | 88 | 19.2 | 1.15 | 4.58 |
WiFi [47,63] | 112 | 168 | 1000 | 0.112 | 0.168 |
Parameter Name | Swept Parameter | Starting Value (mm) | Final Optimized Value (mm) |
---|---|---|---|
WG | N | 27.4 | 27.4 |
WE | N | 37 | 37 |
WF | N | 1.6 | 1.6 |
W | N | 2 | 2 |
HE | N | 59 | 59 |
HR | N | 19.1 | 19.1 |
HG | N | 19.4 | 19.4 |
HT | N | 6 | 6 |
Ls | Y | 6–7.4 | 6 |
Hs | Y | 4–5.4 | 4 |
RA | N | 11.9 | 11.9 |
RB | N | 8.5 | 8.5 |
HD | Y | 4–7 | 4 |
lCD | Y | 75–81 | 81 |
lCE | Y | 8–10.8 | 8 |
Component Label | ATC Part Number | Value |
---|---|---|
C1 | ATC 600L 1R5BT [71] | 1.5 pF |
C2 | ATC 600L 5R6BT [71] | 5.6 pF |
L1 | ATC 0603WL8R2JT [72] | 8.2 nH |
Measured | Simulated | ∆ (dB) | |
---|---|---|---|
Peak Realized Gain (dBi) | 1.25 | 2.37 | 1.12 |
Directivity (dBi) | 1.78 | 3.15 | 1.37 |
Measured | Simulated | ∆ (dB) | |
---|---|---|---|
Peak Realized Gain (dBi) | 4.87 | 6.09 | 1.22 |
Directivity (dBi) | 2.33 | 3.71 | 1.38 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Serio, A.; Buckley, J.; Barton, J.; Newberry, R.; Rodencal, M.; Dunlop, G.; O’Flynn, B. Potential of Sub-GHz Wireless for Future IoT Wearables and Design of Compact 915 MHz Antenna. Sensors 2018, 18, 22. https://doi.org/10.3390/s18010022
Di Serio A, Buckley J, Barton J, Newberry R, Rodencal M, Dunlop G, O’Flynn B. Potential of Sub-GHz Wireless for Future IoT Wearables and Design of Compact 915 MHz Antenna. Sensors. 2018; 18(1):22. https://doi.org/10.3390/s18010022
Chicago/Turabian StyleDi Serio, Adolfo, John Buckley, John Barton, Robert Newberry, Matthew Rodencal, Gary Dunlop, and Brendan O’Flynn. 2018. "Potential of Sub-GHz Wireless for Future IoT Wearables and Design of Compact 915 MHz Antenna" Sensors 18, no. 1: 22. https://doi.org/10.3390/s18010022
APA StyleDi Serio, A., Buckley, J., Barton, J., Newberry, R., Rodencal, M., Dunlop, G., & O’Flynn, B. (2018). Potential of Sub-GHz Wireless for Future IoT Wearables and Design of Compact 915 MHz Antenna. Sensors, 18(1), 22. https://doi.org/10.3390/s18010022