Superconducting Quantum Interferometers for Nondestructive Evaluation
<p>Schematic representation of a Nb-based low-T<sub>c</sub> Josephson junction developed at IRE.</p> "> Figure 2
<p>Schematic representation of Nb-based low-T<sub>c</sub> DC SQUID sensor developed at IRE. The cylindrical superconducting (Nb) shield has been removed for clarity.</p> "> Figure 3
<p>Schematic representation of a step-edge high-T<sub>c</sub> Josephson junction developed at FZJ [<a href="#B28-sensors-17-02798" class="html-bibr">28</a>,<a href="#B29-sensors-17-02798" class="html-bibr">29</a>,<a href="#B30-sensors-17-02798" class="html-bibr">30</a>]. (7.1) Textured MgO substrate with a step height of ~400 nm; (7.2, 7.3) Graphoepitaxial buffer layers; (7.4) YBCO film; (7.5) Grain boundaries.</p> "> Figure 4
<p>(<b>a</b>) Liquid nitrogen minicryostat used for the operation of a high-T<sub>c</sub> DC SQUID gradiometer in an NDE system. The inset shows a photograph of the directly coupled high-T<sub>c</sub> DC SQUID first order planar gradiometer, which was produced on a 1 cm<sup>2</sup> LAO substrate and installed in the cryostat; (<b>b</b>) Scan of an airplane wheel rim using the high-T<sub>c</sub> DC SQUID gradiometer system. The robotic arm scanner moves the cryostat along the outer surface of the wheel rim, while the wheel is rotated around its axis.</p> "> Figure 5
<p>Photograph of a single-channel low-T<sub>c</sub> DC SQUID-based gradiometer system with a liquid He cryostat and a measurement probe. The first-order gradiometer was made of insulated Nb wire with a diameter of 0.05 mm using a “1:1” configuration (one lower and one upper turn) on a textolite rod. The diameter of the pick-up loops of the gradiometer is 4 mm and the base line of the gradiometer is 40 mm. The initial unbalance of the gradiometer is below 1%. The gradiometer ends are fixed mechanically on the Nb lamella of the SQUID sensor for connection to the SQUID input coil.</p> "> Figure 6
<p>(<b>a</b>) Photograph of a high-T<sub>c</sub> DC SQUID microscope with a fiberglass cryostat that can support 0.8 L of liquid nitrogen; (<b>b</b>) Schematic diagram of a high-T<sub>c</sub> DC SQUID with a magnetic flux antenna made of soft magnetic foil penetrating the directly coupled pick-up loop [<a href="#B49-sensors-17-02798" class="html-bibr">49</a>].</p> "> Figure 7
<p>(<b>a</b>) Photograph of a high-T<sub>c</sub> DC SQUID (1) assembled on a sapphire rod, showing parts of the magnetic flux antenna (2) and the modulation coil (3) on ferromagnetic wires (4); (<b>b</b>) Sketch of a DC SQUID with a directly coupled pick-up loop assembled together with low temperature (1) and room temperature (2) parts of the flux antenna.</p> "> Figure 8
<p>3D color-scale image of the magnetic field distribution measured over a weld seam (indicated by a black line) made by laser welding. The range of color-scale values is from −100 nT (blue) to 100 nT (red). The scanned area is 30 mm × 10 mm.</p> "> Figure 9
<p>Magnetic field distribution of the demagnetized state of a 30-nm-thick Co film (contours showing the Co pattern have been added to the picture) prepared on a 50-nm-thick SiN membrane. The color scale represents magnetic fields of between −10 nT (blue) and 10 nT (red). Signals recorded from the magnetic domain structure of 40 µm, 30 µm and 20 µm dots are observable.</p> "> Figure 10
<p>Noise spectra of a 20 mm high-T<sub>c</sub> DC SQUID magnetometer measured at 77 K in a magnetic shield: (<b>a</b>) without a ferromagnetic antenna and (<b>b</b>) with a ferromagnetic antenna. The inset shows a measurement of human magnetoencephalography performed using a high-T<sub>c</sub> DC SQUID magnetometer that has a sensitivity in the femto-Tesla range at low frequencies.</p> ">
Abstract
:1. Introduction
2. Basic Principle of Operation and Important Features of SQUIDs
3. Low-Tc vs. High-Tc JJs and DC SQUIDs: Technologies and Properties
4. Low-Tc and High-Tc SQUID NDE Systems
5. High-Tc SQUID Microscope System with a Ferromagnetic Flux Antenna for NDE
Acknowledgments
Conflicts of Interest
References
- Clarke, J.; Braginski, A.I. (Eds.) Fundamentals and technology of SQUIDs and SQUID systems. In The SQUID Handbook; WILEY-VCH Verlag GmbH&Co. KgaA: Weinheim, Germany, 2004; Volume 1, ISBN 3-52740229-2. [Google Scholar]
- Anahory, Y.; Reiner, J.; Embon, L.; Halbertal, D.; Yakovenko, A.; Myasoedov, Y.; Rappaport, M.L.; Huber, M.E.; Zeldov, E. Three-junction SQUID-on-tip with tunable in-plane and out-of-plane magnetic field sensitivity. Nano Lett. 2014, 14, 6481–6487. [Google Scholar] [CrossRef] [PubMed]
- Schultze, V.; Linzen, S.; Schüler, T.; Chwala, A.; Stolz, R.; Schulz, M.; Meyer, H.-G. Rapid and sensitive magnetometer surveys of large areas using SQUIDs—The measurement system and its application to the Niederzimmern Neolithic double-ring ditch exploration. Archaeol. Prospect. 2008, 15, 113–131. [Google Scholar] [CrossRef]
- Schiffler, M.; Queitsch, M.; Stolz, R.; Chwala, A.; Krech, W.; Meyer, H.-G.; Kukowski, N. Calibration of SQUID vector magnetometers in full tensor gradiometry systems. Geophys. J. Int. 2014, 198, 954–964. [Google Scholar] [CrossRef]
- Krause, H.-J.; Michael Mück, M.; Tanaka, S. SQUlDs in Nondestructive Evaluation. In Applied Superconductivity: Handbook on Devices and Applications; Seidel, P., Ed.; Wiley: Weinheim, Germany, 2015; Volume 2. [Google Scholar]
- Krause, H.-J.; von Kreutzbruck, M. Recent developments in SQUID NDE. Physics C 2002, 368, 70–79. [Google Scholar] [CrossRef]
- Bain, R.J.P.; Donaldson, G.B.; Evanson, S.; Hayward, G. Design and operation of SQUID-based planar gradiometers for NDT of ferromagnetic plates. IEEE Trans. Magn. 1987, 23, 473–476. [Google Scholar] [CrossRef]
- Hahlbohm, H.D.; Lubbig, H. SQUID ‘85 Superconducting Quantum Interference Devices and Their Applications: Proceedings of the Third International Conference on Superconducting Quantum Devices; Walter de Gruyter & Co.: Berlin, Germany, 1985; p. 843. [Google Scholar]
- Sawade, G.; Straub, J.; Krause, H.J.; Bousack, H.; Neudert, G.; Ehrlich, R. Signal analysis methods for remote magnetic examination of prestressed elements. In Proceedings of the International Symposium on Non Destructive Testing in Civil Engineering (NDT-CE), Berlin, Germany, 26–28 September 1995; Schickert, G., Wiggenhauser, H., Eds.; DGZfP: Berlin, Germany, 1995; Volume II, pp. 1077–1084. [Google Scholar]
- Tavrin, Y.; Siegel, M.; Hinken, J.-H. Standard Method for Detection of Magnetic Defects in Aircraft Engine Discs using a HTS SQUID Gradiometer. IEEE Trans. Appl. Supercond. 1999, 9, 3809–3812. [Google Scholar] [CrossRef]
- Kleiner, R.; Buckel, W. Applications of Superconductivity. In Superconductivity: An Introduction, 3rd ed.; Wiley-VCH Verlag GmbH & Co. KgaA: Weinheim, Germany, 2016; Chapter 7; ISBN 978-3-527-41162-7. [Google Scholar]
- Faley, M.I. Epitaxial oxide heterostructures for ultimate high-Tc quantum interferometers. In Applications of High-Tc Superconductivity; Luiz, A., Ed.; InTech: Rijeka, Croatia, 2011; ISBN 978-953-307-308-8. [Google Scholar]
- Berry, M. Die geometrische Phase. Spektrum der Wissenschaft, February 1989; 74–81. [Google Scholar]
- Tinkham, M. Introduction to Superconductivity, 2nd ed.; McGraw-Hill Inc.: New York, NY, USA, 1996; p. 225. ISBN 0-07-064878-6. [Google Scholar]
- Ludwig, C.; Kessler, C.; Steinfort, A.J.; Ludwig, W. Versatile high performance digital SQUID electronics. IEEE Trans. Appl. Supercond. 2001, 11, 1122–1125. [Google Scholar] [CrossRef]
- Drung, D.; Bechstein, S.; Franke, K.-P.; Scheiner, M.; Schurig, T. Improved Direct-Coupled dc SQUID Read-out Electronics with Automatic Bias Voltage Tuning. IEEE Trans. Appl. Supercond. 2001, 11, 880–883. [Google Scholar] [CrossRef]
- Kupriyanov, M.Y.; Brinkman, A.; Golubov, A.A.; Siegel, M.; Rogalla, H. Double-barrier Josephson structures as the novel elements for superconducting large-scale integrated circuits. Physics C 1999, 326–327, 16–45. [Google Scholar] [CrossRef]
- Brinkman, A.; Cassel, D.; Golubov, A.A.; Kupriyanov, M.Y.; Siegel, M.; Rogalla, H. Double-barrier Josephson junctions: Theory and experiment. IEEE Trans. Appl. Supercond. 2001, 11, 1146–1149. [Google Scholar] [CrossRef] [Green Version]
- Gudkov, A.L.; Kupriyanov, M.Y.; Samus, A.N. Properties of planar Nb/α-Si/Nb Josephson junctions with various degrees of doping of the α-Si layer. J. Exp. Theor. Phys. 2012, 114, 818–829. [Google Scholar] [CrossRef]
- Gurvitch, M.; Washington, W.A.; Huggins, H.A. High quality refractory Josephson tunnel junctions utilizing thin aluminium layers. Appl. Phys. Lett. 1983, 42, 472–474. [Google Scholar] [CrossRef]
- Shiota, T.; Imamura, T. Fabrication of high quality Nb/AlOx-Al/Nb Josephson junctions: III-Annealing stability of AlOx tunneling barriers. IEEE Trans. Appl. Supercond. 1992, 2, 222–227. [Google Scholar] [CrossRef]
- Stolz, R.; Fritzsch, L.; Meyer, H.-G. LTS SQUID sensor with a new configuration. Supercond. Sci. Technol. 1999, 12, 806–808. [Google Scholar] [CrossRef]
- Supracon AG, Jena, Germany. Available online: http://www.supracon.com/de/kontakt.html (accessed on 30 November 2017).
- Dimos, D.; Chaudhari, P.; Mannhart, J.; LeGoues, F.K. Orientation Dependence of Grain-Boundary Critical Currents in YBa2Cu3O7-δ Bicrystals. Phys. Rev. Lett. 1988, 61, 219. [Google Scholar] [CrossRef] [PubMed]
- Faley, M.I.; Jia, C.L.; Poppe, U.; Houben, L.; Urban, K. Meandering of the grain boundary and d-wave effects in bicrystal Josephson junctions. Supercond. Sci. Technol. 2006, 19, S195–S199. [Google Scholar] [CrossRef]
- Daly, K.P.; Dozier, W.D.; Burch, J.F.; Coons, S.B.; Hu, R.; Platt, C.E.; Simon, R.W. Substrate step-edge YBa2Cu3O7 rf SQUIDs. Appl. Phys. Lett. 1990, 58, 543. [Google Scholar] [CrossRef]
- Mitchell, E.E.; Foley, C.P. YBCO step-edge junctions with high IcRn. Supercond. Sci. Technol. 2010, 23, 65007. [Google Scholar] [CrossRef]
- Faley, M.I. Reproducible Step-Edge Josephson Junction. U.S. Patent 9,666,783 B2, 30 May 2017. [Google Scholar]
- Faley, M.I. Reproduzierbarerer Stufen-Josephson-Kontakt für ein Bauelementder supraleitenden Elektronik und Herstellverfahren dafür. DE Patent 102,012,006,825 B4, 26 February 2015. [Google Scholar]
- Faley, M.I. Reproduzierbarerer Stufen-Josephson-Kontakt. EP Patent 2,834,860 B1, 30 December 2015. [Google Scholar]
- Faley, M.I.; Dammers, J.; Maslennikov, Y.V.; Schneiderman, J.F.; Winkler, D.; Koshelets, V.P.; Shah, N.J.; Dunin-Borkowski, R.E. High-Tc SQUID biomagnetometers. Supercond. Sci. Technol. 2017, 30, 83001. [Google Scholar] [CrossRef]
- Faley, M.I.; Maslennikov, Y.V.; Koshelets, V.P.; Dunin-Borkowski, R.E. Flip-Chip High-Tc DC SQUID Magnetometer with a Ferromagnetic Flux Antenna. IEEE Trans. Appl. Supercond. 2017. [Google Scholar]
- Ji, Y.; Du, S.; Xie, L.; Chang, K.; Liu, Y.; Zhang, Y.; Xie, X.; Wang, Y.; Lin, J.; Rong, L. TEM measurement in a low resistivity overburden performed by using low temperature SQUID. J. Appl. Geophys. 2016, 135, 243–248. [Google Scholar] [CrossRef]
- Supracon AG. JESSY STAR. Available online: http://www.supracon.com/de/star.html (accessed on 30 November 2017).
- Keenan, S.T.; Young, J.A.; Foley, C.P.; Du, J. A high-Tc flip-chip SQUID gradiometer for mobile underwater magnetic sensing. Supercond. Sci. Technol. 2010, 23, 25029. [Google Scholar] [CrossRef]
- Peters, A.; Vodel, W.; Koch, H.; Neubert, R.; Reeg, H.; Schroeder, C.H. A cryogenic current comparator for the absolute measurement of nA beams. AIP Conf. Proc. 1998, 451, 163–180. [Google Scholar] [CrossRef]
- Tympel, V.; Golm, J.; Neubert, R.; Seidel, P.; Schmelz, M.; Stolz, R.; Zakosarenko, V.; Kurian, F.; Schwickert, M.; Sieber, T.; Stöhlker, T. The Next Generation of Cryogenic Current Comparators for Beam Monitoring. In Proceedings of the International Beam Instrumentation Conference (IBIC 2016), Barcelona, Spain, 11–15 September 2016; pp. 441–444, ISBN 978-3-95450-177-9. [Google Scholar]
- Watanabe, T.; Fukunishi, N.; Kase, M.; Kamigaito, O.; Inamori, S.; Kon, K. Beam Current Monitor with a High-Tc Current Sensor and SQUID at the RIBF. J. Supercond. Nov. Magn. 2013, 26, 1297–1300. [Google Scholar] [CrossRef]
- Krause, H.-J.; Hohmann, R.; Soltner, H.; Lomparski, D.; Grüneklee, M.; Banzet, M.; Schubert, J.; Zander, W.; Zhang, Y.; Wolf, W.; et al. Mobile HTS SQUID system for eddy current testing of aircraft. In Review of Progress in Quantitative Nondestructive Evaluation; Thompson, D.O., Chimenti, D.E., Eds.; Plenum Publishing: New York, NY, USA, 1997; Volume 16, pp. 1053–1060. ISBN 0-306-45597-8. [Google Scholar]
- Grüneklee, M.; Krause, H.-J.; Hohmann, R.; Maus, M.; Lomparski, D.; Banzet, M.; Schubert, J.; Zander, W.; Zhang, Y.; Wolf, W.; et al. HTS SQUID System for Eddy Current Testing of Airplane Wheels and Rivets. In Review of Progress in Quantitative Nondestructive Evaluation; Thompson, D.O., Chimenti, D.E., Eds.; Springer: Boston, MA, USA, 1998; Volume 17, pp. 1075–1082. [Google Scholar] [CrossRef]
- Krause, H.-J.; Hohmann, R.; Grüneklee, M.; Maus, M.; Zhang, Y.; Lomparski, D.; Soltner, H.; Wolf, W.; Banzet, M.; Schubert, J.; et al. Aircraft Wheel and Fuselage Testing with Eddy Current and SQUID. NDTnet 1998, 3. Available online: http://www.ndt.net/article/ecndt98/aero/043/043.htm (accessed on 30 November 2017).
- Krause, H.-J.; Wolf, W.; Glaas, W.; Zimmermann, E.; Faley, M.I.; Sawade, G.; Mattheus, R.; Neudert, G.; Gampe, U.; Krieger, J. SQUID Array for Magnetic Inspection of Prestressed Concrete Bridges. Physica C Supercond. Appl. 2002, 368, 91–95. [Google Scholar] [CrossRef]
- Masutani, N.; Teranishi, S.; Masamoto, K.; Kanenaga, S.; Hatsukade, Y.; Adachi, S.; Tanabe, K. Defect Detection of Pipes using Guided Wave and HTS SQUID. J. Phys. Conf. Ser. 2017, 871, 12074. [Google Scholar] [CrossRef]
- Hatsukade, Y.; Kobayashi, T.; Nakaie, S.; Masutani, N.; Tanaka, Y. Novel Remote NDE Technique for Pipes Combining HTS-SQUID and Ultrasonic Guided Wave. IEEE Trans. Appl. Supercond. 2017, 27, 1600104. [Google Scholar] [CrossRef]
- Tanaka, S.; Ohtani, T.; Krause, H.-J. Prototype of Multi-Channel High-Tc SQUID Metallic Contaminant Detector for Large Sized Packaged Food. IEICE Trans. Electron. 2017, E100-C, 269–273. [Google Scholar] [CrossRef]
- Kirtley, J.R.; Wikswo, J.P. Scanning SQUID microscopy. Annu. Rev. Mater. Sci. 1999, 29, 117–148. [Google Scholar] [CrossRef]
- Cui, Z.; Kirtley, J.R.; Wang, Y.; Kratz, P.A.; Rosenberg, A.J.; Watson, C.A.; Gibson, G.W., Jr.; Ketchen, M.B.; Moler, K.A. Scanning SQUID sampler with 40-ps time resolution. Rev. Sci. Instrum. 2017, 88, 83703. [Google Scholar] [CrossRef] [PubMed]
- Poppe, U.; Faley, M.I.; Breunig, I.; Speen, R.; Urban, K.; Zimmermann, E.; Glaas, W.; Halling, H. HTS dc-SQUID Microscope with soft-magnetic Flux Guide. Supercond. Sci. Technol. 2004, 17, S191–S195. [Google Scholar] [CrossRef]
- Faley, M.I.; Zimmermann, E.; Poppe, U.; Urban, K.; Halling, H.; Soltner, H.; Jungbluth, B.; Speen, R.; Glaas, W. Magnetic Flow Sensor Comprising a Magnetic Field Conductor and a Hole Diaphragm. U.S. Patent 7,221,156 (B2), 22 May 2007. [Google Scholar]
- Faley, M.I.; Kostyurina, E.A.; Diehle, P.; Poppe, U.; Kovacs, A.; Maslennikov, Y.V.; Koshelets, V.P.; Dunin-Borkowski, R.E. Nondestructive Evaluation Using a High-Tc SQUID Microscope. IEEE Trans. Appl. Supercond. 2017, 27, 1600905. [Google Scholar] [CrossRef]
- Wellstood, F.C.; Mathai, A.; Song, D.; Black, R.C. Method and Apparatus for Imaging Microscopic Spatial Variations in Small Currents and Magnetic Fields. U.S. Patent 5,491,411, 13 February 1996. [Google Scholar]
- Faley, M.I.; Pratt, K.; Reineman, R.; Schurig, D.; Gott, S.; Sarwinski, R.E.; Paulson, D.N.; Starr, T.N.; Fagaly, R.L. HTS dc-SQUID Micro-Susceptometer for Room Temperature Objects. Supercond. Sci. Technol. 2004, 17, S324–S327. [Google Scholar] [CrossRef]
- Assmus, K.; Hübner, W.; Pyzalla, A.; Pinto, H. Structure transformations in CrNi steels under tribological stressing at low temperatures. Tribotest 2006, 12, 149–159. [Google Scholar] [CrossRef]
- Gareev, R.R.; Weides, M.; Schreiber, R.; Poppe, U. Resonant tunneling magnetoresistance in antiferromagnetically coupled Fe-based structures with multilayered Si/Ge spacers. Appl. Phys. Lett. 2006, 88, 172105. [Google Scholar] [CrossRef] [Green Version]
- Geithner, R.; Heinert, D.; Neubert, R.; Vodel, W.; Seidel, P. Low temperature permeability and current noise of ferromagnetic pickup coils. Cryogenics 2013, 54, 16–19. [Google Scholar] [CrossRef]
- Faley, M.I.; Poppe, U.; Urban, K.; Paulson, D.N.; Starr, T.; Fagaly, R.L. Low noise HTS dc-SQUID flip-chip magnetometers and gradiometers. IEEE Trans. Appl. Supercond. 2001, 11, 1383–1386. [Google Scholar] [CrossRef] [Green Version]
- Dammers, J.; Chocholacs, H.; Eich, E.; Boers, F.; Faley, M.; Dunin-Borkowski, R.E.; Shah, N.J. Source localization of brain activity using helium-free interferometer. Appl. Phys. Lett. 2014, 104, 213705. [Google Scholar] [CrossRef]
- Vasyukov, D.; Anahory, Y.; Embon, L.; Halbertal, D.; Cuppens, J.; Neeman, L.; Finkler, A.; Segev, Y.; Myasoedov, Y.; Rappaport, M.L.; et al. A scanning superconducting quantum interference device with single electron spin sensitivity. Nat. Nanotechnol. 2013, 8, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Uri, A.; Meltzer, A.Y.; Anahory, Y.; Embon, L.; Lachman, E.O.; Halbertal, D.; HR, N.; Myasoedov, Y.; Huber, M.E.; et al. Electrically Tunable Multiterminal SQUID-on-Tip. Nano Lett. 2016, 16, 6910–6915. [Google Scholar] [CrossRef] [PubMed]
- Smilde, H.-J.H.; Ariando, R.H.; Hilgenkamp, H. Bistable superconducting quantum interference device with built-in switchable π/2 phase shift. Appl. Phys. Lett. 2004, 85, 4091. [Google Scholar] [CrossRef]
- Poppe, U.; Divin, Y.Y.; Faley, M.I.; Wu, J.S.; Jia, C.L.; Shadrin, P.; Urban, K. Properties of YBa2Cu3O7 Thin Films Deposited on Substrates and Bicrystals with Vicinal Offcut and Realization of High IcRn Junctions. IEEE Trans. Appl. Supercond. 2001, 11, 3768–3771. [Google Scholar] [CrossRef] [Green Version]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faley, M.I.; Kostyurina, E.A.; Kalashnikov, K.V.; Maslennikov, Y.V.; Koshelets, V.P.; Dunin-Borkowski, R.E. Superconducting Quantum Interferometers for Nondestructive Evaluation. Sensors 2017, 17, 2798. https://doi.org/10.3390/s17122798
Faley MI, Kostyurina EA, Kalashnikov KV, Maslennikov YV, Koshelets VP, Dunin-Borkowski RE. Superconducting Quantum Interferometers for Nondestructive Evaluation. Sensors. 2017; 17(12):2798. https://doi.org/10.3390/s17122798
Chicago/Turabian StyleFaley, M. I., E. A. Kostyurina, K. V. Kalashnikov, Yu. V. Maslennikov, V. P. Koshelets, and R. E. Dunin-Borkowski. 2017. "Superconducting Quantum Interferometers for Nondestructive Evaluation" Sensors 17, no. 12: 2798. https://doi.org/10.3390/s17122798
APA StyleFaley, M. I., Kostyurina, E. A., Kalashnikov, K. V., Maslennikov, Y. V., Koshelets, V. P., & Dunin-Borkowski, R. E. (2017). Superconducting Quantum Interferometers for Nondestructive Evaluation. Sensors, 17(12), 2798. https://doi.org/10.3390/s17122798