An Optical Interferometric Triaxial Displacement Sensor for Structural Health Monitoring: Characterization of Sliding and Debonding for a Delamination Process
<p>A schematic diagram of the triaxial displacement sensor. The sensor consists of an optical fiber component and a mirror component. OF represents optical fiber. Three EFPIs are formed by the endfaces of the three optical fibers and their corresponding mirrors. The inclined surfaces S<sub>1</sub>, S<sub>2</sub>, and S<sub>3</sub> have angles of inclination <span class="html-italic">θ</span><sub>1</sub>, <span class="html-italic">θ</span><sub>2</sub>, and <span class="html-italic">θ</span><sub>3</sub> (0° < <span class="html-italic">θ</span><sub>1</sub>, <span class="html-italic">θ</span><sub>2</sub>, <span class="html-italic">θ</span><sub>3</sub> < 90°) with respect to the <span class="html-italic">XOY</span> plane, respectively. A 3D coordinate system, <span class="html-italic">XYZ</span>, is defined in the figure.</p> "> Figure 2
<p>(<b>a</b>) Three-dimensional rendering of the triaxial sensor model for 3D relative displacement sensing. The mirrors and endfaces of the corresponding optical fibers are parallel, such that three EFPIs are formed. Both the optical fibers and mirrors are supported on separate roof-like structures. (<b>b</b>) A photograph of the sensor. The sensor is packaged and protected by a metal shell and a waterproof rubber casing. The size of the metal shell is 14 mm × 14 mm × 6 mm.</p> "> Figure 3
<p>A schematic diagram of the experimental setup. Three input–output channels are connected to the three single mode fibers, which terminate and form three EFPIs in the sensor head. An integrated optical switch is used for rapid switching between EFPIs.</p> "> Figure 4
<p>Calibration results of the triaxial displacement sensor. (<b>a</b>) Interference spectra recorded from the triaxial displacement sensor for the initial cavity length settings. (<b>b</b>) The changes in cavity lengths of the three EFPIs as a function of applied displacements along the <span class="html-italic">X</span> direction (<span class="html-italic">d<sub>x</sub></span>). (<b>c</b>) The changes in cavity lengths of the three EFPIs as a function of applied displacements along the <span class="html-italic">Y</span> direction (<span class="html-italic">d<sub>y</sub></span>). In the experiment, the mirror component was fixed on an optical table, and the optical fiber component was positioned by an optical stage. The coordinate system used in the experiment is the same as the <span class="html-italic">XYZ</span> system shown in <a href="#sensors-17-02696-f002" class="html-fig">Figure 2</a>a.</p> "> Figure 5
<p>Measured cavity length change of EFPI<sub>1</sub>, EFPI<sub>2</sub>, and EFPI<sub>3</sub> with respect to temperature.</p> "> Figure 6
<p>Continuous displacement measurements. (<b>a</b>) The schematic diagram of the experiment setup for monitoring delamination and sliding. Note that the mirror component (MC) is embedded in a milled-out square area that is 3 mm deep so that the top surface of the metal base support of the MC matches the top surface of the steel plate. (<b>b</b>) Cavity length changes as a function of time from three EFPIs during continuous displacement measurements for a brick of mortar during the drying/curing process. OFC and MC represent the optical fiber component and the mirror component, respectively. Mortar components and weight ratios: Sakrete Portland Type-1 cement, 1.0; tap water, 0.5; sand, 2.8. Brick of mortar size: 254.0 mm × 25.4 mm × 25.4 mm.</p> "> Figure 7
<p>Real-time monitoring of 3D displacements between the long square brick of mortar and the steel base plate during the mortar curing/drying process. (<b>a</b>–<b>c</b>) Displacements versus time data for the <span class="html-italic">X</span>, <span class="html-italic">Y</span>, <span class="html-italic">Z</span> coordinates, respectively. The insets are plots of the time derivatives of the displacements as a function of measurement time for the <span class="html-italic">X</span>, <span class="html-italic">Y</span>, and <span class="html-italic">Z</span> directions. (<b>d</b>) Measured displacements plotted in the 3D domain parameterized by a time variable. The coordinate system used in the experiment was the same as the <span class="html-italic">XYZ</span> coordinate system shown in <a href="#sensors-17-02696-f005" class="html-fig">Figure 5</a>a. The displacements along the <span class="html-italic">X</span>, <span class="html-italic">Y</span>, and <span class="html-italic">Z</span> directions revealed the interfacial sliding along the <span class="html-italic">X</span> direction, the buckling along the <span class="html-italic">Y</span> direction, and the debonding along the <span class="html-italic">Z</span> direction between the mortar and the steel base plate, respectively.</p> "> Figure 8
<p>The displacement along the <span class="html-italic">X</span> direction measured by our prototype sensor and the LVDT. The inset shows the data collected during a period between 50 and 70 h.</p> ">
Abstract
:1. Introduction
2. Sensor Structure and Principle
3. Experimental Results and Discussion
3.1. Sensor Characterization
3.2. Sensor Testing
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Shi, X.; Xie, N.; Fortune, K.; Gong, J. Durability of steel reinforced concrete in chloride environments: An overview. Constr. Build. Mater. 2012, 30, 125–138. [Google Scholar] [CrossRef]
- Li, W.; Xu, C.; Ho, S.C.M.; Wang, B.; Song, G. Monitoring Concrete Deterioration Due to Reinforcement Corrosion by Integrating Acoustic Emission and FBG Strain Measurements. Sensors 2017, 17, 657. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wu, F.; Chang, F.K. Structural health monitoring from fiber-reinforced composites to steel-reinforced concrete. Smart Mater. Struct. 2001, 10, 548. [Google Scholar] [CrossRef]
- Guo, T.T.; Wang, Q.Y.; Wu, L.H. Experimental research on distributed fiber sensor for sliding damage monitoring. Opt. Lasers Eng. 2009, 47, 156–160. [Google Scholar]
- Degala, S.; Rizzo, P.; Ramanathan, K.; Harries, K.A. Acoustic emission monitoring of CFRP reinforced concrete slabs. Constr. Build. Mater. 2009, 23, 2016–2026. [Google Scholar] [CrossRef]
- Park, S.; Kim, J.W.; Lee, C.; Park, S.K. Impedance-based wireless debonding condition monitoring of CFRP laminated concrete structures. NDT E Int. 2011, 44, 232–238. [Google Scholar] [CrossRef]
- Li, W.J.; Fan, S.; Ho, S.C.M.; Wu, J.; Song, G. Interfacial debonding detection in fiber-reinforced polymer rebar–reinforced concrete using electro-mechanical impedance technique. Struct. Health Monit. 2017. [Google Scholar] [CrossRef]
- Song, G.; Gu, H.; Mo, Y.L. Smart aggregates: Multi-functional sensors for concrete structures—A tutorial and a review. Smart Mater. Struct. 2008, 17. [Google Scholar] [CrossRef]
- Bremer, K.; Weigand, F.; Zheng, Y.; Alwis, L.S.; Helbig, R.; Roth, B. Structural Health Monitoring Using Textile Reinforcement Structures with Integrated Optical Fiber Sensors. Sensors 2017, 17, 345. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Wu, Z. Distributed long-gauge optical fiber sensors based self-sensing FRP bar for concrete structure. Sensors 2016, 16, 286. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yuan, L.; Hefferman, G.; Wei, T. Ultraweak intrinsic Fabry–Perot cavity array for distributed sensing. Opt. Lett. 2015, 40, 320–323. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Lan, X.; Luo, M.; Xiao, H. Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry. Opt. Express 2014, 22, 18757–18769. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Han, Y.; Li, Y.; Tsai, H.L.; Xiao, H. Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement. Opt. Express 2008, 16, 5764–5769. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Chen, Y.; Du, Y.; Zhuang, Y.; Liu, F.; Gerald, R.E.; Huang, J. A Displacement Sensor with Centimeter Dynamic Range and Submicrometer Resolution Based on an Optical Interferometer. IEEE Sens. J. 2017, 17, 5523–5528. [Google Scholar] [CrossRef]
- Jia, B.; He, L.; Yan, G.; Feng, Y. A differential reflective intensity optical fiber angular displacement sensor. Sensors 2016, 16, 1508. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hou, Y.; Zhang, H.; Jia, P.; Su, S.; Fang, G.; Liu, W.; Xiong, J. A wide-range displacement sensor based on plastic fiber macro-bend coupling. Sensors 2017, 17, 196. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.P.; Zhou, J.; Jia, Z.H. High-sensitivity displacement sensor based on a bent fiber Mach–Zehnder interferometer. IEEE Photonics Technol. Lett. 2013, 25, 2354–2357. [Google Scholar] [CrossRef]
- Salceda-Delgado, G.; Martinez-Rios, A.; Selvas-Aguilar, R.; Álvarez-Tamayo, R.I.; Castillo-Guzman, A.; Ibarra-Escamilla, B.; Durán-Ramírez, V.M.; Enriquez-Gomez, L.F. Adaptable Optical Fiber Displacement-Curvature Sensor Based on a Modal Michelson Interferometer with a Tapered Single Mode Fiber. Sensors 2017, 17, 1259. [Google Scholar] [CrossRef] [PubMed]
- Bravo, M.; Pinto, A.M.; Lopez-Amo, M.; Kobelke, J.; Schuster, K. High precision micro-displacement fiber sensor through a suspended-core Sagnac interferometer. Opt. Lett. 2012, 37, 202–204. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Agus, M.H.; Wang, P.F.; Semenova, Y.; Farrell, G. Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing. IEEE Photonics Technol. Lett. 2011, 23, 130–132. [Google Scholar] [CrossRef]
- Zhu, H.H.; Yin, J.H.; Zhang, L.; Jin, W.; Dong, J. Monitoring internal displacements of a model dam using FBG sensing bars. Adv. Struct. Eng. 2010, 13, 249–261. [Google Scholar] [CrossRef]
- Habel, W.R.; Hofmann, D.; Hillemeier, B. Deformation measurements of mortars at early ages and of large concrete components on site by means of embedded fiber-optic microstrain sensors. Cem. Concr. Compos. 1997, 19, 81–102. [Google Scholar] [CrossRef]
- Rapp, S.; Kang, L.H.; Han, J.H.; Mueller, U.C.; Baier, H. Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors. Smart Mater. Struct. 2009, 18, 025006. [Google Scholar] [CrossRef]
- Lee, B.H.; Kim, Y.H.; Park, K.S.; Eom, J.B.; Kim, M.J.; Rho, B.S.; Choi, H.Y. Interferometric optical fiber sensors. Sensors 2012, 12, 2467–2486. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.L.; Yu, Q.X. Wide-range displacement sensor based on fiber-optic Fabry–Perot interferometer for subnanometer measurement. IEEE Sens. J. 2011, 11, 1602–1606. [Google Scholar] [CrossRef]
- Bhatia, V.; Murphy, K.A.; Claus, R.O.; Jones, M.E.; Grace, J.L.; Tran, T.A.; Greene, J.A. Optical fibre based absolute extrinsic Fabry-Perot interferometric sensing system. Meas. Sci. Technol. 1996, 7, 58–61. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, C.; Chen, Y.; Zhuang, Y.; Du, Y.; Gerald, R.E., II; Tang, Y.; Huang, J. An Optical Interferometric Triaxial Displacement Sensor for Structural Health Monitoring: Characterization of Sliding and Debonding for a Delamination Process. Sensors 2017, 17, 2696. https://doi.org/10.3390/s17112696
Zhu C, Chen Y, Zhuang Y, Du Y, Gerald RE II, Tang Y, Huang J. An Optical Interferometric Triaxial Displacement Sensor for Structural Health Monitoring: Characterization of Sliding and Debonding for a Delamination Process. Sensors. 2017; 17(11):2696. https://doi.org/10.3390/s17112696
Chicago/Turabian StyleZhu, Chen, Yizheng Chen, Yiyang Zhuang, Yang Du, Rex E. Gerald, II, Yan Tang, and Jie Huang. 2017. "An Optical Interferometric Triaxial Displacement Sensor for Structural Health Monitoring: Characterization of Sliding and Debonding for a Delamination Process" Sensors 17, no. 11: 2696. https://doi.org/10.3390/s17112696
APA StyleZhu, C., Chen, Y., Zhuang, Y., Du, Y., Gerald, R. E., II, Tang, Y., & Huang, J. (2017). An Optical Interferometric Triaxial Displacement Sensor for Structural Health Monitoring: Characterization of Sliding and Debonding for a Delamination Process. Sensors, 17(11), 2696. https://doi.org/10.3390/s17112696