An Improved Scheduling Algorithm for Data Transmission in Ultrasonic Phased Arrays with Multi-Group Ultrasonic Sensors
<p>The diagram of the ultrasonic data transmission for the multi-sensor scanning.</p> "> Figure 2
<p>The time slot transition diagram of the <span class="html-italic">N</span> FIFOs reading operations.</p> "> Figure 3
<p>No time-gap switching flow chart of the <span class="html-italic">N</span>-group scanning and the <span class="html-italic">N</span>-FIFO caches shared.</p> "> Figure 4
<p>The 4 FIFOs read timing waves of the MFBSS algorithm from Signaltap.</p> "> Figure 5
<p>Comparison of the bandwidth utilization ratios of the MFBSS algorithm and the ETSPS algorithm.</p> "> Figure 6
<p>The 4 FIFOs reading timing waves of the ETSPS algorithm from Signaltap.</p> ">
Abstract
:1. Introduction
2. Multi-Group Sensor Scanning Ultrasonic Data Transmission
3. Data Transmission Scheduling Mechanism of MFBSS Algorithm
3.1. The principle of the Maximal Bandwidth Utilization
- Data transmission models Gp(n), n = 0, 1, …, N − 1 are independent from each other and have identical distributions for every group.
- The sum of the data bandwidth [ ] of all the groups and the sum of the memory bandwidth () and the sum of the transmission bandwidth () of the peripheral need to satisfy the following inequality:
3.2. Realization of the Maximal Bandwidth Utilization Ratio
- Assuming that at the moment , when the FIFOi is read until empty, the reading operation of the FIFOi will be disabled.
- At the next , when the FIFOi is full and the amount of the data is L(i) (i = 0, 1, …, N − 1), the reading operation of the FIFOi will be enabled.
4. Implementation and Performance Evaluation of the Scheduling Algorithm
- The MFBSS algorithm. According to Equation (11), the theoretical value of the shared output bandwidth is or (). The actual value of the shared output bandwidth is , which satisfies the following conditions: , F1 or F2, and the value of is minimized. For instance, when = 24.375 HMz, and = fclk/4 = 25 MHz, and thus the actual bandwidth utilization ratio is which equals to 97.5%.
- The ETSPS algorithm. According to Equation (13), the larger the value of max(VWf(i)) is, the smaller the value of is. The smaller the value of max(VWf(i)) is, the larger the value of is. So, when the value of equals to , i.e., VW(0) = VW(1) = … = VW(i) = … = VW(N − 1), the maximum theoretical value of can be expressed by Equation (14).
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Walter, S.; Hersog, T.; Schubert, F.; Heuer, H. Investigations of PMN-PT composites for high sensitive ultrasonic phased array probes in NDE. Proceeding of the 2015 IEEE Sensors, Busan, Korea, 1–4 November 2015; pp. 1–4. [Google Scholar]
- Yuan, C.; Xie, C.; Li, L.; Zhang, F.; Gubanski, S.M. Ultrasonic phased array detection of internal defects in composite insulators. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 525–531. [Google Scholar] [CrossRef]
- Rubtsov, V.; Tarasov, S.; Kolubaev, E.; Psakhie, S. Ultrasonic phase array and eddy current methods for diagnostics of flaws in friction stir welds. In Proceedings of the International Conference on Physical Mesomechanics of Multilevel Systems, Tomsk, Russia, 3–5 September 2014; pp. 539–542. [Google Scholar]
- Hynynen, K.; Clement, G.N.; Vykhodtseva, N.; King, R.; White, P.J.; Vitek, S. 500-element ultrasound phased array system for noninvasive focal surgery of the brain: A preliminary rabbit study with ex vivo human skulls. Magn. Reson. Med. 2004, 52, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Gigliotti, J.V.; Wallace, M.; Griggio, F.; Demore, C.E.M.; Cochran, S. Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging. Sensors 2015, 15, 8020–8041. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Song, K.; Zhang, S.; Yang, J.; Cao, P. Design of a broadband electrical impedance matching network for piezoelectric ultrasound transducers based on a genetic algorithm. Sensors 2014, 14, 6828–6843. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.J.; Milan, J. Differential diagnosis of chronic splenomegaly by grey-scale ultrasonography: Clinical observations and digital A-scan analysis. Br. J. Radiol. 1976, 49, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Dutt, V.; Greenleaf, J.F. Adaptive speckle reduction filter for log-compressed B-scan images. IEEE Trans. Med. Imag. 1996, 15, 802–813. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Blalock, T.N.; Hossack, J.A. Synthetic axial acquisition-full resolution, low-cost C-scan ultrasonic imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 236–239. [Google Scholar] [PubMed]
- Lin, R.B.; Liu, G.X.; Tang, W.M. FPGA implementation of ultrasonic s-scan coordinate conversion based on radix-4 CORDIC algorithm. Zeitschrift Gemeine Mikrobiologie 2012, 15, 505–512. [Google Scholar] [CrossRef]
- Song, J.; Pulkkinen, A.; Huang, Y.; Hynynen, K. Investigation of standing-wave formation in a human skull for a clinical prototype of a large-aperture, transcranial MR-guided focused ultrasound (MRgFUS) phased array: An experimental and simulation study. IEEE Trans. Biomed. Eng. 2012, 59, 435–444. [Google Scholar] [CrossRef] [PubMed]
- ASTM F2491-13. Standard Guide for Evaluating Performance Characteristics of Phased-Array Ultrasonic Testing Instruments and Systems; ASTM: West Conshohocken, PA, USA, 2013. [Google Scholar]
- Choi, H.K.; Choi, J.D.; Jang, Y.S. Numerical analysis of queuing delay in cyclic bandwidth allocation TDMA system. Electr. Lett. 2014, 50, 1204–1205. [Google Scholar] [CrossRef]
- Park, H.; Choi, K. Adaptively weighted round-robin arbitration for equality of service in a many-core network-on-chip. IET Comput. Digit. Tech. 2016, 10, 37–44. [Google Scholar] [CrossRef]
- Slimane, M.B.; Hafaiedh, I.B.; Robbana, R. Formal-based design and verification of SoC arbitration protocols: A comparative analysis of TDMA and round-robin. IEEE Des. Test 2017, 34, 54–62. [Google Scholar] [CrossRef]
- Srinivasan, S.; Pandharipande, A. Self-configuring scheduling protocol for ultrasonic sensor systems. IEEE Sens. J. 2013, 13, 2517–2518. [Google Scholar] [CrossRef]
- Patil, S.; Kulkarni, R.A.; Patil, S.H.; Balaji, N. Performance improvement in cloud computing through dynamic task scheduling algorithm. In Proceedings of the International Conference on Next Generation Computing Technologies, Dehradun, India, 4–5 September 2015; pp. 96–100. [Google Scholar]
- Chronaki, K.; Rico, A.; Casas, M.; Moreto, M.; Badia, R.; Ayguade, E. Task scheduling techniques for asymmetric multi-core systems. IEEE Trans. Parallel Distrib. Syst. 2017, 28, 2074–2087. [Google Scholar] [CrossRef]
- Long, J.; Dong, M.; Ota, K.; Liu, A. A Green TDMA Scheduling algorithm for prolonging lifetime in wireless sensor networks. IEEE Syst. J. 2017, 11, 868–877. [Google Scholar] [CrossRef]
- Yaashuwanth, C.; Ramesh, R. A New Scheduling Algorithm for Real Time System; Auto-Ordnance Corporation: West Hurley, NY, USA, 2010; pp. 1104–1106. [Google Scholar]
- Liu, J.; Soleimanifar, M.; Lu, M. Resource-loaded piping spool fabrication scheduling: Material-supply-driven optimization. Visual. Eng. 2017, 5, 1–14. [Google Scholar] [CrossRef]
- Fischetti, M.; Monaci, M. Using a general-purpose mixed-integer linear programming solver for the practical solution of real-time train rescheduling. Eur. J. Oper. Res. 2017, 263, 258–264. [Google Scholar] [CrossRef]
- Ou, X.; Chang, Q.; Chakraborty, N.; Wang, J. Gantry scheduling for multi-gantry production system by online task allocation method. IEEE Robot. Autom. Lett. 2017, 99, 1848–1855. [Google Scholar] [CrossRef]
- SCFIFO and DCFIFO IP Cores User Guide. Available online: https://www.altera.com/content/dam/altera-www/ global/en_US/pdfs/literature/ug/ug_fifo.pdf (accessed on 2 January 2017).
- Pan, D.; Yang, Y. FIFO-based multicast scheduling algorithm for virtual output queued packet switches. IEEE Trans. Comput. 2005, 54, 1283–1297. [Google Scholar]
- Fernandez, G.; Jalle, J.; Abella, J.; Quinones, E.; Vardanega, T.; Cazorla, F.J. Computing safe contention bounds for multicore resources with round-robin and FIFO arbitration. IEEE Trans. Comput. 2017, 66, 586–600. [Google Scholar] [CrossRef]
- Tassart, S. Time-invariant context for sample rate conversion systems. IEEE Trans. Signal Proc. 2012, 60, 1098–1107. [Google Scholar] [CrossRef]
- Castiglioni, P.; Piccini, L.; Rienzo, M.D. Interpolation technique for extracting features from ECG signals sampled at low sampling rates. In Proceedings of the Computers in Cardiology, Thessaloniki Chalkidiki, Greece, 21–24 September 2003; pp. 481–484. [Google Scholar]
- Samson, C.A.; Bezanson, A.; Brown, J.A. A sub-nyquist, variable sampling, high-frequency phased array beamformer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Avalon Interface Specifications. Available online: https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf (accessed on 10 February2017).
- Cyclone V Avalon-ST Interface for PCIe Solutions User Guide. Available online: https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_c5_pcie_avst.pdf (accessed on 15 January 2017).
- Durante, P.; Neufeld, N.; Schwemmer, R.; Balbi, G.; Marconi, U. 100 Gbps PCI-express readout for the LHCb upgrade. IEEE Trans. Nuclear Sci. 2015, 62, 1752–1757. [Google Scholar] [CrossRef]
Group Number | Sampling Rate (Hz) | Bit Width | Cache | Length of FIFO | Input Width of FIFO (bit) | Writing Bandwidth (bit/s) | Output Width of FIFO (bit) | Reading Bandwidth (bit/s) |
---|---|---|---|---|---|---|---|---|
0 | fs0 | ΔB | FIFO0 | L(0) | ΔBW | VW(0) | ΔBR | VR |
1 | fs1 | ΔB | FIFO1 | L(1) | ΔBW | VW(1) | ΔBR | VR |
2 | fs2 | ΔB | FIFO2 | L(2) | ΔBW | VW(2) | ΔBR | VR |
... | ... | ... | ... | ... | ... | ... | ... | ... |
N − 1 | fsN−1 | ΔB | FIFON−1 | L(N − 1) | ΔBW | VW(N − 1) | ΔBR | VR |
N | fs0 | fs1 | fs2 | fs3 | ... | fsN−1 | L(0):L(1):...:L(N − 1) |
---|---|---|---|---|---|---|---|
2 | 1 | 2 | × | × | × | × | 1:1 |
3 | 1 | 2 | 3 | × | × | × | 5:8:9 |
4 | 1 | 2 | 3 | 4 | × | × | 9:16:21:24 |
... | ... | ... | ... | ... | ... | × | ... |
N | 1 | 2 | 3 | 4 | ... | N − 1 | (VR − fs0) × fs0:(VR − fs1) × fs1:...:(VR − fsN−1) × fsN−1 |
fp (MHz) | fsn (MHz) | VWf(n) = fsn × ΔB/ΔBW (MHz) | VRf = ΣVWf(n) (MHz) | L(n) × ΔBW (bit) |
---|---|---|---|---|
2 | 20 | 2.5 | 24.375 | 14 × 64 |
2.5 | 25 | 3.125 | 24.375 | 17 × 64 |
5 | 50 | 6.25 | 24.375 | 29 × 64 |
10 | 100 | 12.5 | 24.375 | 38 × 64 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, W.; Liu, G.; Li, Y.; Tan, D. An Improved Scheduling Algorithm for Data Transmission in Ultrasonic Phased Arrays with Multi-Group Ultrasonic Sensors. Sensors 2017, 17, 2355. https://doi.org/10.3390/s17102355
Tang W, Liu G, Li Y, Tan D. An Improved Scheduling Algorithm for Data Transmission in Ultrasonic Phased Arrays with Multi-Group Ultrasonic Sensors. Sensors. 2017; 17(10):2355. https://doi.org/10.3390/s17102355
Chicago/Turabian StyleTang, Wenming, Guixiong Liu, Yuzhong Li, and Daji Tan. 2017. "An Improved Scheduling Algorithm for Data Transmission in Ultrasonic Phased Arrays with Multi-Group Ultrasonic Sensors" Sensors 17, no. 10: 2355. https://doi.org/10.3390/s17102355
APA StyleTang, W., Liu, G., Li, Y., & Tan, D. (2017). An Improved Scheduling Algorithm for Data Transmission in Ultrasonic Phased Arrays with Multi-Group Ultrasonic Sensors. Sensors, 17(10), 2355. https://doi.org/10.3390/s17102355