Electromagnetic Differential Measuring Method: Application in Microstrip Sensors Developing
<p>EM waves treatment in remote sensing applications. Devices need to synchronize the reference systems. Reference systems have the same reference time.</p> "> Figure 2
<p>Differential method with different frequencies. The differential measures in the receiver incorporate information. Time synchronization is not necessary. The differential method proposed can also use a single frequency inducing different medium conditions.</p> "> Figure 3
<p>Multifrequency FDTD simulation in a dielectric medium. Transparent (<math display="inline"> <semantics> <mrow> <msub> <mi>ϵ</mi> <mrow> <mi>e</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>) for the first frequency at the top. Different interaction (propagation speed and energy absorption) for other frequencies with different <math display="inline"> <semantics> <msub> <mi>ϵ</mi> <mrow> <mi>e</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> </semantics> </math>. Time differences <math display="inline"> <semantics> <mrow> <mi mathvariant="normal">Δ</mi> <msub> <mi>t</mi> <mn>1</mn> </msub> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mi mathvariant="normal">Δ</mi> <msub> <mi>t</mi> <mn>2</mn> </msub> </mrow> </semantics> </math> can be measured to analyze dielectric medium.</p> "> Figure 4
<p>Rectangular wave guide (<math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>60</mn> </mrow> </semantics> </math> mm, <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>7.894</mn> </mrow> </semantics> </math> mm and <math display="inline"> <semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>3.947</mn> </mrow> </semantics> </math> mm) used in propagation simulation built with two differentiated transmission lines. One input signal is transmitted (1) to the waveguide and derived into the two transmission lines. Two output ports signals are obtained (2) and time difference of arrival between two waves are obtained (3). The difference measured (4) characterize medium <math display="inline"> <semantics> <msub> <mi>ϵ</mi> <mi>r</mi> </msub> </semantics> </math>.</p> "> Figure 5
<p>Three pictures with wave propagation simulation (in time domain) using waveguide shown in <a href="#sensors-17-01650-f004" class="html-fig">Figure 4</a>; <math display="inline"> <semantics> <mrow> <mi>m</mi> <mn>1</mn> </mrow> </semantics> </math> is the input pulse, <math display="inline"> <semantics> <mrow> <mi>m</mi> <mn>2</mn> </mrow> </semantics> </math> is output line pulse with <math display="inline"> <semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <mi>m</mi> <mn>3</mn> </mrow> </semantics> </math> is output line pulse with unknown <math display="inline"> <semantics> <msub> <mi>ϵ</mi> <mi>r</mi> </msub> </semantics> </math>. One input signal is transmitted (<math display="inline"> <semantics> <mrow> <mi>m</mi> <mn>1</mn> </mrow> </semantics> </math>) to the waveguide and derived into the two transmission lines. Two output ports signals are obtained (<math display="inline"> <semantics> <mrow> <mi>m</mi> <mn>2</mn> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mi>m</mi> <mn>3</mn> </mrow> </semantics> </math>) and time difference of arrival between two waves are obtained (<math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="normal">Δ</mi> <mi>t</mi> </msub> <mo>=</mo> <mi>m</mi> <mn>3</mn> <mo>−</mo> <mi>m</mi> <mn>2</mn> </mrow> </semantics> </math>). The measured difference (4) characterizes <math display="inline"> <semantics> <msub> <mi>ϵ</mi> <mi>m</mi> </msub> </semantics> </math>.</p> "> Figure 6
<p>Permittivity obtained using differential measures in equation.</p> "> Figure 7
<p>Frequency response in rectangular wave guide with different dielectric (<math display="inline"> <semantics> <msub> <mi>ϵ</mi> <mi>r</mi> </msub> </semantics> </math>) materials. Simulation using HFSS software is performed. Differences in cutoff frequencies (<math display="inline"> <semantics> <mrow> <msub> <mi>m</mi> <mi>i</mi> </msub> <mo>−</mo> <msub> <mi>m</mi> <mi>j</mi> </msub> <mo>=</mo> <mi>f</mi> <msub> <mi>c</mi> <mi>i</mi> </msub> <mo>−</mo> <mi>f</mi> <msub> <mi>c</mi> <mi>j</mi> </msub> <mo>=</mo> <msub> <mi mathvariant="normal">Δ</mi> <mi>f</mi> </msub> </mrow> </semantics> </math>) are obtained to calculate unknown <math display="inline"> <semantics> <msub> <mi>ϵ</mi> <mi>r</mi> </msub> </semantics> </math>.</p> "> Figure 8
<p>Basic microstip sensor.</p> "> Figure 9
<p>Microstip sensor proposed. Differential measures on electrodes are performed.</p> "> Figure 10
<p>Sensitive analysis to determine how different values of dielectric medium (<math display="inline"> <semantics> <msub> <mi>ϵ</mi> <mi>m</mi> </msub> </semantics> </math>) and microstrip dimensions (h and w) impact on effective permittivity (<math display="inline"> <semantics> <msub> <mi>ϵ</mi> <mrow> <mi>e</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> </semantics> </math>) shown in Equation (<a href="#FD10-sensors-17-01650" class="html-disp-formula">10</a>).</p> "> Figure 11
<p>General model of microstip sensor proposed (<math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>25</mn> </mrow> </semantics> </math> mm, <math display="inline"> <semantics> <mrow> <mi>w</mi> <mi>i</mi> <mi>d</mi> <mi>t</mi> <mi>h</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics> </math> mm, <math display="inline"> <semantics> <mrow> <mi>h</mi> <mi>e</mi> <mi>i</mi> <mi>g</mi> <mi>h</mi> <mi>t</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math> mm and patch <math display="inline"> <semantics> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics> </math> mm). Numeric differential measures (<math display="inline"> <semantics> <msub> <mi>d</mi> <mrow> <mi>m</mi> <mi>r</mi> </mrow> </msub> </semantics> </math>) can be obtained to characterize dielectric medium unknown (<math display="inline"> <semantics> <msub> <mi>ϵ</mi> <mi>m</mi> </msub> </semantics> </math>), knowing reference permittivity (<math display="inline"> <semantics> <msub> <mi>ϵ</mi> <mi>r</mi> </msub> </semantics> </math>) and microstrip substrate (<math display="inline"> <semantics> <msub> <mi>ϵ</mi> <mi>s</mi> </msub> </semantics> </math>).</p> "> Figure 12
<p>Microstrip line simulation with reference and substrate permittivity <math display="inline"> <semantics> <mrow> <msub> <mi>ϵ</mi> <mi>r</mi> </msub> <mo>=</mo> <mn>4</mn> </mrow> </semantics> </math>. Different permittivity medium <math display="inline"> <semantics> <msub> <mi>ϵ</mi> <mi>m</mi> </msub> </semantics> </math> are used to obtain phase shift on microstrip terminals.</p> "> Figure 13
<p>Microstrip line simulation with reference and substrate permittivity <math display="inline"> <semantics> <mrow> <msub> <mi>ϵ</mi> <mi>r</mi> </msub> <mo>=</mo> <mn>4</mn> </mrow> </semantics> </math>. Different permittivity medium <math display="inline"> <semantics> <msub> <mi>ϵ</mi> <mi>m</mi> </msub> </semantics> </math> are used to obtain differential electric field on microstrip terminals.</p> "> Figure 14
<p>Microstrip line used as a sensor to detect permittivity levels of unknown material. Microstrip patch can have different dimensions and forms.</p> "> Figure 15
<p>Configuration of a sensor microstrip that detect low, medium or high permittivity levels in applications where permittivity must be detected.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Differential Measurement Model
- If the wave-medium interaction is known, the link distance (emitter-receiver) can be estimated using differential measures in the receiver. This treatment is useful for location systems.
- If the distance emitter-receiver or some environment conditions are known, medium parameters can be estimated using differential measures in the receiver. This treatment is useful for medium detection systems.
Differences with Similar Methods
4. Advantages and Disadvantages Over the Conventional Scenarios
- A differential electric measurement is floating, meaning that it has no reference to ground. The measurement is taken as the voltage difference between two ports. The main benefit of a differential measurement is noise rejection, because the noise is added to both wires and can then be filtered out by the common mode rejection of the data acquisition system.
- The differential method proposed could use adapted TDT and TDR transmissions, expanding their capabilities on multi-frequency signals or multi-medium support.
- Conventional treatment must use a synchronized reference systems in the transmitter and receiver. In contrast to this conventional signal treatment a differential measure model is proposed and measured magnitude in the receiver (arrival time, signal amplitude, etc.) are relative. Differential measurements work with independent temporal references and enable the application of solutions with independent positional reference systems.
5. Simulation of wave Propagation in Dielectric Medium
6. Microstrip Sensor and Differential Measures
- Differential phase shift
- Differential electrical field
- Other differential measures (impedances, signal loss, etc.)
6.1. Differential Measure Based in Phase Shift
6.2. Differential Measure Based in Electrical Field
6.3. Microstrip Sensors
6.4. Simulation Platform and Other Electromagnetic Effects (Dielectric Losses and Materials)
7. Conclusions
- If unkown material permittivity is equal or similar to reference permittivity , differential measures are minimum (Figure 13).
- Level detectors can be built using differential measures on microstrip configuration (Table 5).
- Multi reference materials can be used in substrate configuration to build levels detectors (Figure 15).
- Heuristic rules can be processed to detect levels exceeding limit values (Table 6).
- Materials permittivity could be characterized using microstrips configuration with reference substrate and adapted dimensions.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kerle, N. Chapter Electromagnetic Radiation (EMR). In Encyclopedia of Natural Hazards; Springer: Dordrecht, The Netherlands, 2013; p. 250. [Google Scholar]
- Pastor, F.J.F.; Chamizo, J.M.G.; Nieto-Hidalgo, M. Electromagnetic Multi-frequency Model and Differential Measuring in Remote Sensing Applications. In Proceedings of the International Conference on Ubiquitous Computing and Ambient Intelligence (UCAmI), Las Palmas de Gran Canaria, Spain, 29 November–2 December 2016. [Google Scholar]
- Davis, J.L.; Annan, A.P. Ground-penetration radar for high-resolution mapping of soil and rock stratigraphy. Geophys. Prospect. 1989, 37, 531–551. [Google Scholar] [CrossRef]
- Huston, D.; Xia, T.; Zhang, Y.; Fan, T.; Razinger, J.; Burns, D. Tri-band ground penetrating radar for subsurface structural condition assessments and utility mapping. In Transforming the Future of Infrastructure through Smarter Information, International Conference on Smart Infrastructure and Construction, Robinson College, CA, USA, 27–29 June 2016; ICE Publishing: London, UK, 2016; pp. 283–287. [Google Scholar]
- Doviak, R.J.; Zrnic, D.S. Doppler Radar & Weather Observations; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Roy Bhowmik, S.K.; Sen Roy, S.; Srivastava, K.; Mukhopadhay, B.; Thampi, S.B.; Reddy, Y.K.; Singh, H.; Venkateswarlu, S.; Adhikary, S. Processing of Indian Doppler Weather Radar data for mesoscale applications. Meteorol. Atmos. Phys. 2011, 111, 133–147. [Google Scholar] [CrossRef]
- Marshall, J.; Palmer, W. The Distribution of Raindrops with Size. J. Atmos. Sci. 1948, 5, 165–166. [Google Scholar] [CrossRef]
- Nanding, N.; Rico-Ramirez, M.A.; Han, D. Comparison of different radar-raingauge rainfall merging techniques. J. Hydroinform. 2015, 17, 422–445. [Google Scholar] [CrossRef]
- Grima, C.; Blankenship, D.D.; Schroeder, D.M. Radar signal propagation through the ionosphere of Europa. Planet. Space Sci. 2015, 117, 421–428. [Google Scholar] [CrossRef]
- Verma, A.K.; Jha, K.K.; Tewari, R.K. Effect of the atmosphere on radio and radar performance. In Proceedings of the Fourth IEEE Region 10 International Conference TENCON, Bombay, India, 22–24 November 1989; pp. 844–847. [Google Scholar]
- Guy, A. History of Biological Effects and Medical Applications of Microwave Energy. IEEE Trans. Microw. Theory Tech. 1984, 32, 1182–1200. [Google Scholar] [CrossRef]
- Duke, S. Basic Introduction to Bioelectromagnetics, 2nd ed.; Colorado School of Mines: Golden, CO, USA, 1990. [Google Scholar]
- Williams, J.M. Biological Effects of Microwaves: Thermal and nonThermal Mechanisms. arXiv, 2001; arXiv:physics/0102007. [Google Scholar]
- Foster, K.R.; Schwan, H.P. Dielectric properties of tissues. In Handbook of Biological Effects of Electromagnetic Fields; CRC Press: Boca Raton, FL, USA, 1995; Volume 2, pp. 25–102. [Google Scholar]
- Raicu, V.; Feldman, Y. Dielectric Relaxation in Biological Systems: Physical Principles, Methods, and Applications; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Zakharov, P.; Talary, M.S.; Caduff, A. A wearable diffuse reflectance sensor for continuous monitoring of cutaneous blood content. Phys. Med. Biol. 2009, 54, 5301. [Google Scholar] [CrossRef] [PubMed]
- Bogosanovich, M. Microstrip patch sensor for measurement of the permittivity of homogeneous dielectric materials. IEEE Trans. Instrum. Meas. 2000, 49, 1144–1148. [Google Scholar] [CrossRef]
- Toba, T.; Kitagawa, A. Wireless Moisture Sensor Using a Microstrip Antenna. J. Sens. 2011, 2011. [Google Scholar] [CrossRef]
- Simons, R.N. Coplanar Waveguide Circuits, Components, and Systems; Wiley-IEEE Press: New York, NY, USA, 2001. [Google Scholar]
- Sharifi, A.; Varsavsky, A.; Ulloa, J.; Horsburgh, J.C.; McAuley, S.A.; Krishnamurthy, B.; Jenkins, A.J.; Colman, P.G.; Ward, G.M.; MacIsaac, R.J.; et al. Redundancy in Glucose Sensing. J. Diabetes Sci. Technol. 2016, 10, 669–678. [Google Scholar] [CrossRef] [PubMed]
- Mueller, M.; Talary, M.S.; Falco, L.; Feo, O.D.; Stahel, W.A.; Caduff, A. Data Processing for Noninvasive Continuous Glucose Monitoring with a Multisensor Device. J. Diabetes Sci. Technol. 2011, 5, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Delmastro, F.; Conti, M. Wearable Computing and Sensor Systems for Healthcare. In Pervasive Computing and Networking; John Wiley and Sons, Ltd.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Microwaves & RF. What’s the Difference Between Microstrip and Stripline? 2016. Available online: http://www.mwrf.com/datasheet/what-s-difference-between-microstrip-and-stripline-pdf-download (accessed on 16 June 2017).
- Taflove, A.; Oskooi, A.; Johnson, S. Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology; Artech House: Norwood, MA, USA, 2013. [Google Scholar]
- Yee, K. Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 1966, 14, 302–307. [Google Scholar]
- Wilson, J. Sensor Technology Handbooks, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Subbaraj, S.; Ramalingam, V.S.; Kanagasabai, M.; Sundarsingh, E.F.; Selvam, Y.P.; Kingsley, S. Electromagnetic Nondestructive Material Characterization of Dielectrics Using EBG Based Planar Transmission Line Sensor. IEEE Sens. J. 2016, 16, 7081–7087. [Google Scholar] [CrossRef]
- Li, Y.; Bowler, N.; Johnson, D.B. A Resonant Microwave Patch Sensor for Detection of Layer Thickness or Permittivity Variations in Multilayered Dielectric Structures. IEEE Sens. J. 2011, 11, 5–15. [Google Scholar] [CrossRef]
- Radonić, V.; Kitić, G.; Crnojević-Bengin, V. Novel Hilbert soil-moisture sensor based on the phase shift method. In Proceedings of the 2010 10th Mediterranean Microwave Symposium, Guzelyurt, Turkey, 25–27 August 2010; pp. 377–380. [Google Scholar]
- Caduff, A.; Mueller, M.; Megej, A.; Dewarrat, F.; Suri, R.E.; Klisic, J.; Donath, M.; Zakharov, P.; Schaub, D.; Stahel, W.A.; et al. Characteristics of a multisensor system for non invasive glucose monitoring with external validation and prospective evaluation. Biosens. Bioelectron. 2011, 26, 3794–3800. [Google Scholar] [CrossRef] [PubMed]
- Talary, M.S.; Dewarrat, F.; Caduff, A.; Puzenko, A.; Ryabov, Y.; Feldman, Y. An RCL sensor for measuring dielectrically lossy materials in the MHz frequency range. Part I. Comparison of hydrogel model simulation with actual hydrogel impedance measurements. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 247–256. [Google Scholar] [CrossRef]
- ANSYS HFSS. Electromagnetic Software. 2017. Available online: http://www.ansys.com/products/electronics/ansys-hfss (accessed on 16 July 2017).
Medium is Represented by m Parameters in Functions |
---|
IF is a measurable magnitude (speed propagation, time, amplitude, phase of arrival) which represents the interaction: wave (E) - medium (M), and the medium M has EM medium parameters () |
THEN: measurable magnitude in the receiver is a function |
IF differences () are measured in the receiver THEN: different equations can be combined to calculate medium parameters (). |
1. IF different frequencies are used in the interaction THEN: the equations system formed is: |
() → are the unknown medium parameters |
and → are EM waves at frequencies i and j |
→ are the differential measure obtained in receiver device |
For frequencies there are n differential measures in receiver device. |
2. IF only a frequency is used THEN: differential measures can be obtained with known medium parameters used as references. The same EM wave (E) is transmitted through a known reference medium () and through the unknown medium (). The equations are: |
Simulated Result | Theoretical Result | Error % | |
---|---|---|---|
5.3 | |||
3.3 | |||
3.5 |
Simulated Result | Theoretical Result | Error % | |
---|---|---|---|
2.8 GHz | 3.3 | ||
3.9 GHz | 3.3 | ||
4.4 GHz | 6.7 |
0.523599 | 0.306717 | 0.140298 | 0 | −0.123605 | −0.235352 | −0.338115 | −0.433763 |
1.0472 | 0.613434 | 0.280596 | 0 | −0.24721 | −0.470705 | −0.676229 | −0.867527 |
1.5708 | 0.920151 | 0.420894 | 0 | −0.370815 | −0.706057 | −1.01434 | −1.30129 |
2.0944 | 1.22687 | 0.561191 | 0 | −0.49442 | −0.94140 | −1.35246 | −1.73505 |
2.61799 | 1.53359 | 0.701489 | 0 | −0.618025 | −1.17676 | −1.69057 | −2.16882 |
3.14159 | 1.8403 | 0.841787 | 0 | −0.741629 | −1.41211 | −2.02869 | −2.60258 |
3.66519 | 2.14702 | 0.982085 | 0 | −0.865234 | −1.64747 | −2.3668 | −3.03634 |
1 | 0.6 | 0.8 | >1 | - | - | - | 0.1 | 0.18 | 0.3 |
2 | 0.35 | 0.7 | >1 | - | - | - | 0.05 | 0.1 | 0.2 |
4.4 | 0.1 | 0.4 | 1 | + | - | - | 0.01 | 0.05 | 0.15 |
8 | 0.3 | 0.15 | 0.75 | + | - | - | 0.04 | 0.08 | 0.1 |
10 | 0.5 | 0.1 | 0.6 | + | + | - | 0.1 | 0.02 | 0.1 |
15 | 1.0 | 0.5 | 0.3 | + | + | - | 0.2 | 0.1 | 0.08 |
20 | >1 | >1 | 0.1 | + | + | + | 0.3 | 0.1 | 0.01 |
30 | >1 | >1 | >1 | + | + | + | >1 ns | 0.9 | 0.8 |
( | |
crosses | |
minimum level | |
crosses | |
maximum level | |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrández-Pastor, F.J.; García-Chamizo, J.M.; Nieto-Hidalgo, M. Electromagnetic Differential Measuring Method: Application in Microstrip Sensors Developing. Sensors 2017, 17, 1650. https://doi.org/10.3390/s17071650
Ferrández-Pastor FJ, García-Chamizo JM, Nieto-Hidalgo M. Electromagnetic Differential Measuring Method: Application in Microstrip Sensors Developing. Sensors. 2017; 17(7):1650. https://doi.org/10.3390/s17071650
Chicago/Turabian StyleFerrández-Pastor, Francisco Javier, Juan Manuel García-Chamizo, and Mario Nieto-Hidalgo. 2017. "Electromagnetic Differential Measuring Method: Application in Microstrip Sensors Developing" Sensors 17, no. 7: 1650. https://doi.org/10.3390/s17071650
APA StyleFerrández-Pastor, F. J., García-Chamizo, J. M., & Nieto-Hidalgo, M. (2017). Electromagnetic Differential Measuring Method: Application in Microstrip Sensors Developing. Sensors, 17(7), 1650. https://doi.org/10.3390/s17071650