Array of Chemosensitive Resistors with Composites of Gas Chromatography (GC) Materials and Carbon Black for Detection and Recognition of VOCs: A Basic Study
<p>Schematic representation of the measurement system used in the study.</p> "> Figure 2
<p>Transient responses of 7 QCM sensors to benzaldehyde at 250 ppb and 0% RH.</p> "> Figure 3
<p>Principal component analysis (PCA) scattering of all 21 GC materials based on responses to triplicates of 6 odorant samples (21 sensors × 18 samples).</p> "> Figure 4
<p>PCA scattering for 6 odorants based on responses of (<b>a</b>) all 21 QCM sensors; and (<b>b</b>) the 8 top-ranked QCM sensors.</p> "> Figure 5
<p>Schematic representation of the 1-channel chemosensitive resistor device used in the initial viability test.</p> "> Figure 6
<p>Current–voltage (IV) characteristics for the chemosensitive resistor coated with PEG2000-carbon black composite.</p> "> Figure 7
<p>Transient responses of chemosensitive resistors coated with carbon black composites containing (<b>a</b>) THEED; and (<b>b</b>) PEG20M to vapors of pyrrole (3 triplicates at 4 concentrations).</p> "> Figure 8
<p>Schematic representation of the 16-channel chemosensitive resistor device used in this part of the study. The numbers denote individual chemosensitive resistor elements coated with appropriate composite (see <a href="#sensors-17-01606-t004" class="html-table">Table 4</a> for details).</p> "> Figure 9
<p>Microscopic images of a 16-channel chemosensitive resistor device: (<b>a</b>) optical microscope image of the whole device; (<b>b</b>) scanning electron microscopy (SEM) images of surface and cross section of the carbon black—PEG4000 composite film.</p> "> Figure 10
<p>Transient responses of 16-channel chemosensitive resistor microchip sensor to pyrrole (carrier gas: dry nitrogen).</p> "> Figure 11
<p>PCA scattering of the 4 odorant samples at 900 ppb obtained upon responses of the 16-channel chemosensitive resistor microchip sensor.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Preselection of GC Materials Using QCM Sensors
3.2. Application of GC Materials in Carbon Black Composites
3.2.1. Viability Tests Using 1-channel Chemosensitive Resistor Devices
3.2.2. Viability Tests Using 16-channel Chemosensitive Resistor Devices
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Firestein, S. How the olfactory system makes sense of smells. Nature 2001, 413, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Steinhart, H.; Stephan, A.; Bücking, M. Advances in flavor research. J. High Resolut. Chromatogr. 2000, 23, 489–496. [Google Scholar] [CrossRef]
- Reid, L.M.; O’Donnell, C.P.; Downey, G. Recent technological advances for the determination of food authenticity. Trends Food Sci. Technol. 2006, 17, 344–353. [Google Scholar] [CrossRef]
- Persaud, K.; Dodd, G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 1982, 299, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Gardner, J.W.; Bartlet, P.N. A brief history of electronic noses. Sens. Actuators B 1994, 18, 210–211. [Google Scholar] [CrossRef]
- Nagle, H.T.; Gutierrez-Osuna, R.; Schiffman, S.S. The how and why of electronic noses. IEEE Spectr. 1998, 9, 22–31. [Google Scholar] [CrossRef]
- Dillon, W.R.; Goldstein, M. Multivariate Analysis; Wiley: Hoboken, NJ, USA, 1984. [Google Scholar]
- Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Jurs, P.C.; Bakken, G.A.; McClelland, H.E. Computational methods for the analysis of chemical sensor array data from volatile analytes. Chem. Rev. 2000, 100, 2649–2678. [Google Scholar] [CrossRef]
- Hines, E.L.; Llobet, E.; Gardner, J.W. Electronic noses: A review of signal processing techniques. IEEE Proc. Circ. Dev. Syst. 1999, 146, 297–310. [Google Scholar] [CrossRef]
- Chiu, S.; Tang, K. Towards a Chemiresistive Sensor-Integrated Electronic Nose: A Review. Sensors 2013, 13, 14214–14247. [Google Scholar] [CrossRef] [PubMed]
- Loutfia, A.; Coradeschia, S.; Manib, G.K.; Shankarb, P.; Rayappan, J.B.B. Electronic noses for food quality: A review. J. Food Eng. 2015, 144, 103–111. [Google Scholar] [CrossRef]
- Dymerski, T.; Gębicki, J.; Wardencki, W.; Namieśnik, J. Application of an Electronic Nose Instrument to Fast Classification of Polish Honey Types. Sensors 2014, 14, 10709–10724. [Google Scholar] [CrossRef] [PubMed]
- Kiani, S.; Minaei, S.; Ghasemi-Varnamkhasti, M. Application of electronic nose systems for assessing quality of medicinal and aromatic plant products: A review. J. Appl. Res. Med. Aromat. Plants 2016, 3, 1–9. [Google Scholar] [CrossRef]
- Deshmukh, S.; Bandopadhyay, R.; Bhattacharyya, N.; Pandey, R.A.; Jana, A. Application of electronic nose for industrial odors and gaseous emissions measurement and monitoring—An overview. Talanta 2015, 144, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.D. Advances in Electronic-Nose Technologies for the Detection of Volatile Biomarker Metabolites in the Human Breath. Metabolites 2015, 5, 140–163. [Google Scholar] [CrossRef] [PubMed]
- Adiguzel, Y.; Kulah, H. Breath sensors for lung cancer diagnosis. Biosens. Bioelectron. 2015, 65, 121–138. [Google Scholar] [CrossRef] [PubMed]
- Nanto, H.; Stetter, J.R. Introduction to Chemosensors. In Handbook of Machine Olfaction; Pearce, T.C., Schiffman, S.S., Troy Nagle, H., Gardner, J.W., Eds.; Wiley-VCH: Weinheim, Germany, 2003; pp. 79–104. [Google Scholar]
- Wilson, A.D.; Baietto, M. Applications and Advances in Electronic-Nose Technologies. Sensors 2009, 9, 5099–5148. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.D. Recent progress in the design and clinical development of electronic-nose technologies. Nanobiosensors Dis. Diagn. 2016, 5, 15–27. [Google Scholar]
- Grate, J.W.; Wise, B.M. A method for chemometric classification of unknown vapors from the responses of an array of volume-transducing sensors. Anal. Chem. 2001, 73, 2239–2244. [Google Scholar] [CrossRef] [PubMed]
- Che Harun, F.K.; Taylor, J.E.; Covington, J.A.; Gardner, J.W. An electronic nose employing dual-channel odour separation columns with large chemosensor array for advanced odour discrimination. Sens. Actuators B 2009, 141, 134–140. [Google Scholar] [CrossRef]
- Bernabei, M.; Persaud, K.C.; Pantalei, S.; Zampetti, E.; Beccherelli, R. Large-Scale Chemical Sensor Array Testing Biological Olfaction Concepts. IEEE Sens. J. 2012, 12, 3174–3183. [Google Scholar] [CrossRef]
- Marco, S.; Gutierrz-Galvez, A.; Lansner, A.; Martinez, D.; Rospars, J.P.; Becherelli, R.; Perera, A.; Pearce, T.C.; Verschure, P.F.M.J.; Persaud, K. A biomimetic approach to machine olfaction, featuring a very large-scale chemical sensor array and embedded neuro-bio-inspired computation. Microsyst. Technol. 2014, 20, 729–742. [Google Scholar] [CrossRef]
- Bai, H.; Shi, G. Gas sensors based on conducting polymers. Sensors 2007, 7, 267–307. [Google Scholar] [CrossRef]
- Unde, S.; Ganu, J.; Radhakrishnan, S. Conducting polymer-based chemical sensor: Characteristics and evaluation of polyaniline composite films. Adv. Mater. Opt. Electron. 1996, 6, 151–157. [Google Scholar] [CrossRef]
- Llobet, E. Gas sensors using carbon nanomaterials: A review. Sens. Actuators B 2013, 179, 32–45. [Google Scholar] [CrossRef]
- Lonergan, M.C.; Severin, E.J.; Doleman, B.J.; Beaber, S.A.; Grubbs, R.H.; Lewis, N.S. Array-Based Vapor Sensing Using Chemically Sensitive, Carbon Black−Polymer Resistors. Chem. Mater. 1996, 8, 2298–2312. [Google Scholar] [CrossRef]
- Zaporotskova, I.V.; Boroznina, N.P.; Parkhomenko, Y.N.; Kozhitov, L.V. Carbon nanotubes: Sensor Properties. A review. Mod. Electron. Mater. 2016, 2, 95–105. [Google Scholar] [CrossRef]
- McReynolds, W.O. Gas chromatographic retention data. J. Chromatogr. Sci. 1970, 8, 685–691. [Google Scholar] [CrossRef]
- Kersten, B.R.; Poole, C.F.; Furton, K.G. Ambiguities in the determination of McReynolds stationary phase constants. J. Chromatogr. 1987, 411, 43–59. [Google Scholar] [CrossRef]
Sensor Type | Sensing Mechanism | Output; Operating Temperature | Sensitivity | Advantages | Disadvantages |
---|---|---|---|---|---|
Metal Oxide Semiconductor | Reaction of target gases/vapors with oxygen chemisorbed in sensing layer | Electrical resistance change; 250–600 °C | 5–500 ppm | Fast response and recovery, low cost, durability/longevity, simplicity | High operating temperature and power consumption, sensitivity to Sulfur poisoning |
Metal Oxide Semiconductor Field Effect Transistor | Changes in the drain-source current and the gate voltage upon interaction with target gases/vapors | Electric field change; 75–200 °C | >0.1 ppm | Low cost, small size, good reproducibility | Baseline drift, require controlled environment |
Calorimetric | Oxidation of target gases/vapors | Temperature or heat change; 500–550 °C | 10–100 ppm | Fast response, stability, low cost | High operating temperature, risk of catalyst poisoning |
Optical | Changes of optical properties upon exposure to target gases/vapors | Light modulation, optical changes; Room temperature | Low ppb to ppm | High sensitivity, durability/longevity, low sensitivity to environmental change | Complex circuitry, low portability, suffer from photobleaching |
Quartz Crystal Microbalance | Mass change upon sorption of target gases/vapors | Mass change (frequency shift); Room temperature | 1 ng | High sensitivity, good precision, diverse range of sensing materials | Complex circuitry, sensitive to humidity an temperature |
Surface Acoustic Wave | Mass change upon sorption of target gases/vapors | Mass change (frequency or phase shift); Room temperature | 1 pg to 1 ng | High sensitivity, fast response, diverse range of sensing materials, low cost | Complex circuitry, sensitive to humidity and temperature |
Carbon Nanofiber Based | Change of electric/electronic properties upon sorption of target gases/vapors | Typically electrical resistance change; Room temperature | <20 ppm | Excellent sorptive capacity, diversity | High cost, difficult to fabricate, low precision |
Conducting Polymer | Volume change upon sorption of target gases/vapors | Electrical resistance change; Room temperature | 0.1–100 ppm | Fast response, diverse sensing materials, operate at room temperature, high stability, low cost | Sensitive to humidity and temperature, might suffer from baseline drift and saturation |
Carbon Particle Based (e.g., carbon black) | Volume change upon sorption of target gases/vapors | Electrical resistance change; Room temperature | ppb to ppm range | Diverse sensing materials, operate at room temperature, easy to miniaturize, low cost | Sensitive to humidity and temperature, might suffer from baseline drift |
Material | Abbreviation | Manufacturer | Frequency Shift (kHz) | |
---|---|---|---|---|
1. | Free Fatty Acid Phase | FFAP | Sigma-Aldrich | 23.6 |
2. | N,N-Bis(2-cyanoethyl)formamide | BCEF | Tokyo Kasei | 17.6 |
3. | Poly(ethylene succinate) | PDEAS | Sigma-Aldrich | 21.6 |
4. | LAC-3-R-728 (12% DEGS) | LAC-3 | GL Sciences Japan | 20.5 |
5. | Silicone OV-210 | OV-210 | GL Sciences Japan | 10.9 |
6. | Tetrahydrohyethylenediamine | THEED | GL Sciences Japan | 21.4 |
7. | Silicone OV-275 | OV-275 | GL Sciences Japan | 21.1 |
8. | Reoplex 400 | Re-400 | GL Sciences Japan | 22.8 |
9. | Diethylene Glycol Succinate | DEGS | Sigma-Aldrich | 22.1 |
10. | Poly[di(ethylene glycol)adipate] | PDEGA | Sigma-Aldrich | 20.4 |
11. | Diglycerol | DI | Tokyo Kasei | 12.5 |
12. | Silicone OV-17 | OV-17 | Sigma-Aldrich | 11.9 |
13. | Silicone OV-1 | OV-1 | Sigma-Aldrich | 11.0 |
14. | Apiezon-L | Ap-L | M&I Materials | 25.3 |
15. | SP-2330 | SP-3 | Sigma-Aldrich | 21.1 |
16. | SP-2340 | SP-4 | Sigma-Aldrich | 18.7 |
17. | 1,2,3-Tris(2-cyanoethoxy)propane | TCEP | Sigma-Aldrich | 4.5 |
18. | UCON 75-H-90000 | UCON | Shimadzu | 7.8 |
19. | Poly(ethylene glycol) 20M | PEG20M | Shimadzu | 5.8 |
20. | Poly(ethylene glycol) 20000 | PEG20k | Shimadzu | 8.9 |
21. | Poly(ethylene glycol) 2000 | PEG2k | Sigma-Aldrich | 7.8 |
Rank | Material | Discrimination Factor |
---|---|---|
1. | Tetrahydrohyethylenediamine | 33.66 |
2. | DiethyleneGlycolSuccinate | 21.72 |
3. | SiliconeOV-210 | 12.71 |
4. | Diglycerol | 12.60 |
5. | Poly(ethyleneglycol)20000 | 12.16 |
6. | SP-2330 | 11.31 |
7. | N,N-Bis(2-cyanoethyl)formamide | 9.16 |
8. | SiliconeOV-1 | 9.01 |
9. | Reoplex400 | 8.56 |
10. | UCON75-H-90000 | 6.77 |
11. | Poly[di(ethyleneglycol)adipate] | 5.83 |
12. | Poly(ethyleneglycol)20M | 5.81 |
13. | 1,2,3-Tris(2-cyanoethoxy)propane | 2.71 |
14. | FreeFattyAcidPhase | 2.59 |
15. | SiliconeOV-275 | 2.44 |
16. | SiliconeOV-17 | 2.43 |
17. | LAC-3-R-728(12%DEGS) | 1.91 |
18. | SP-2340 | 1.27 |
19. | Apiezon-L | 0.61 |
20. | Poly(ethyleneglycol)2000 | 0.58 |
21. | Poly(ethylenesuccinate) | 0.06 |
Spot Number | GC Materials | Concentration | Solvent | |
---|---|---|---|---|
GC (mg/mL) | CB (mg/mL) | |||
1 | THEED | 10 | 10 | DMSO |
2 | BCEF | 10 | 10 | DMSO |
3 | LAC-3R-728 | 10 | 10 | DMSO |
4 | DEGS | 10 | 10 | DMSO |
5 | PES | 10 | 10 | DMSO |
6 | UCON75-HB-90000 | 10 | 10 | DMSO |
7 | TCEP | 10 | 10 | DMSO |
8 | SP-2330 | 10 | 10 | DMSO |
9 | SP-2340 | 10 | 10 | DMSO |
10 | Diglycerol | 10 | 10 | DMSO |
11 | Reoplex400 | 10 | 10 | DMSO |
12 | PEG600 | 10 | 10 | DMSO |
13 | PEG4000 | 10 | 10 | DMSO |
14 | PEG20K | 10 | 10 | DMSO:MeCN = 5:1 |
15 | PEG20M | 10 | 10 | DMSO:MeCN = 5:1 |
16 | FFAP | 10 | 10 | DMSO:MeCN = 5:1 |
R0 (ohm) | Sensitivity (%/100 ppb) | ||||
---|---|---|---|---|---|
PYR | PHE | NAL | BZAL | ||
Tetrahydrohyethylenediamine (THEED) | 5420 | 0 | 0.006 | 0.019 | 0.159 |
DEGS | 8818 | 0.015 | 0.006 | 0.006 | 0.144 |
Diglycerol | 4407 | 0 | 0.001 | 0.007 | 0.028 |
PEG 20000 | 8247 | 0.129 | 0.039 | 0.019 | 0.439 |
SP-2330 | 5765 | 0.015 | 0.027 | 0.006 | 0.089 |
N,N-Bis(2-cyanoethyl)formamide (BCEF) | 23,019 | 0 | 0.001 | 0.004 | 0 |
Reoplex 400 | 1602 | 0 | 0.006 | 0 | 0.004 |
UCON 75-H-90000 | 5824 | 0.167 | 0.035 | 0.008 | 0.375 |
PEG20M | 1492 | 0.032 | 0.052 | 0.005 | 0.154 |
1,2,3-Tris(2-cyanoethoxy)propane | 1481 | 0.007 | 0.005 | 0 | 0 |
Free Fatty Acid Phase (FFAP) | 1803 | 0.035 | 0.012 | 0 | 0.395 |
LAC-3-R-728 (12% DEGS) | 18,914 | 0.011 | 0.004 | 0.001 | 0.347 |
SP-2340 | 2356 | 0.023 | 0.016 | 0.009 | 0.110 |
PEG 2000 | 7654 | 0.082 | 0.021 | 0.006 | 0.099 |
Poly(ethylene succinate) | 2378 | 0.011 | 0.009 | 0.012 | 0.043 |
PEG 600 | 38,574 | 0.005 | 0.001 | 0.001 | 0.006 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wyszynski, B.; Yatabe, R.; Nakao, A.; Nakatani, M.; Oki, A.; Oka, H.; Toko, K. Array of Chemosensitive Resistors with Composites of Gas Chromatography (GC) Materials and Carbon Black for Detection and Recognition of VOCs: A Basic Study. Sensors 2017, 17, 1606. https://doi.org/10.3390/s17071606
Wyszynski B, Yatabe R, Nakao A, Nakatani M, Oki A, Oka H, Toko K. Array of Chemosensitive Resistors with Composites of Gas Chromatography (GC) Materials and Carbon Black for Detection and Recognition of VOCs: A Basic Study. Sensors. 2017; 17(7):1606. https://doi.org/10.3390/s17071606
Chicago/Turabian StyleWyszynski, Bartosz, Rui Yatabe, Atsuo Nakao, Masaya Nakatani, Akio Oki, Hiroaki Oka, and Kiyoshi Toko. 2017. "Array of Chemosensitive Resistors with Composites of Gas Chromatography (GC) Materials and Carbon Black for Detection and Recognition of VOCs: A Basic Study" Sensors 17, no. 7: 1606. https://doi.org/10.3390/s17071606
APA StyleWyszynski, B., Yatabe, R., Nakao, A., Nakatani, M., Oki, A., Oka, H., & Toko, K. (2017). Array of Chemosensitive Resistors with Composites of Gas Chromatography (GC) Materials and Carbon Black for Detection and Recognition of VOCs: A Basic Study. Sensors, 17(7), 1606. https://doi.org/10.3390/s17071606