Single Carrier with Frequency Domain Equalization for Synthetic Aperture Underwater Acoustic Communications
<p>Block diagram: (<b>a</b>) transmitter and (<b>b</b>) receiver.</p> "> Figure 2
<p>Basic FDE receiver structure for the single carrier-system.</p> "> Figure 3
<p>Hybrid time frequency domain equalizer (HTFDE).</p> "> Figure 4
<p>Transmitted signal structure.</p> "> Figure 5
<p>Examples of estimated CIRs for the DJK16 data at five transmissions. The left panel shows CIRs varies as a function of geotime, the right panel show a snapshot of the CIRs. (<b>a</b>,<b>b</b>) shows the CIRs from 5.2 km; (<b>c</b>,<b>d</b>) shows the CIRs from 4.98 km; (<b>e</b>,<b>f</b>) shows the CIRs from 5.09 km; (<b>g</b>,<b>h</b>) shows the CIRs from 5.18 km; and (<b>i</b>,<b>j</b>) shows the CIRs from 5.0 km, respectively.</p> "> Figure 6
<p>Estimated input SNRs (<b>a</b>), and drifting speed (<b>b</b>).</p> "> Figure 7
<p>Performance comparison between (<b>a</b>) top (Rx #1) and (<b>b</b>) bottom (Rx #8). Three different approaches are compared: (1) individual performance without combining; (2) MRC with FDE; (3) MRC with convolution code; (4) MRC with HTFDE; and (5) MRC with HTFDE and convolution code.</p> "> Figure 8
<p>BER performance using conventional multichannel FDE and HTFDE at one location: (<b>a</b>) Location #1 and (<b>b</b>) Location #5.</p> "> Figure 9
<p>BER performances as a function of the number of transmissions and the number of elements used: (<b>a</b>) the performance with MRC-FDE and convolution code and (<b>b</b>) the performance with MRC-HTFDE and convolution code.</p> "> Figure 10
<p>Output SNR as a function of the number of transmissions and the number of elements used. (<b>a</b>) FDE results and (<b>b</b>) HTFDE results.</p> "> Figure 11
<p>Scatterplot of the equalized first packet signal using the five transmissions with conventional FDE and HTFDE: (<b>a</b>) using the 1st element with FDE; (<b>b</b>) using elements 1 and 2 with FDE; (<b>c</b>) using elements 1 to 3 with FDE; (<b>d</b>) using the 1st element with HTFDE; (<b>e</b>) using elements 1 and 2 with HTFDE; (<b>f</b>) using elements 1 to 3 with HTFDE.</p> ">
Abstract
:1. Introduction
2. System Model
2.1. SC-FDE Signal
2.2. Channel
2.3. Receiver
3. Communication Performance
3.1. DJK16
3.2. Packet Design
3.3. Channels
3.4. Results
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kilfoyle, D.B.; Baggeroer, A.B. The state of the art in underwater acoustic telemetry. IEEE J. Ocean. Eng. 2000, 25, 4–27. [Google Scholar] [CrossRef]
- Stojanovic, M.; Catipovic, J.A.; Proakis, J.G. Phase-coherent digital communications for underwater acoustic channels. IEEE J. Ocean. Eng. 1994, 19, 100–111. [Google Scholar] [CrossRef]
- Stojanovic, M. Efficient processing of acoustic signals for high-rate information transmission over sparse underwater channels. Phys. Commun. 2008, 1, 146–161. [Google Scholar] [CrossRef]
- Li, B.; Zhou, S.; Stojanovic, M.; Freitag, L.; Willett, P. Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts. IEEE J. Ocean. Eng. 2008, 33, 198–209. [Google Scholar]
- Zheng, Y.R.; Xiao, C.; Yang, T.C.; Yang, W.B. Frequency-domain channel estimation and equalization for shallow-water acoustic communications. Phys. Commun. 2010, 3, 48–63. [Google Scholar] [CrossRef]
- He, C.; Huang, J.; Zhang, Q.; Shen, X. Single carrier frequency domain equalizer for underwater wireless Communication. In Proceedings of the 2009 WRI International Conference on Communications and Mobile Computing, Kunming, China, 6–8 January 2009. [Google Scholar]
- He, C.B.; Huang, J.G.; Zhang, Q.F. Hybrid Time-Frequency Domain Equalization for Single-Carrier Underwater Acoustic Communications. In Proceedings of the Conference on Under Water Networks WUWNet ’12, Los Angeles, CA, USA, 5–6 November 2012. [Google Scholar]
- Xia, M.; Rouseff, D.; Ritcey, J.A.; Zou, X. Underwater Acoustic Communication in a Highly Refractive Environment Using SC-FDE. IEEE J. Ocean. Eng. 2014, 39, 491–499. [Google Scholar] [CrossRef]
- Yang, T.C. Correlation-based decision-eeedback equalizer for underwater acoustic communications. IEEE J. Ocean. Eng. 2005, 30, 865–880. [Google Scholar] [CrossRef]
- Song, A.; Badiey, M.; McDonald, V.K.; Yang, T.C. Time Reversal Receivers for High Data Rate Acoustic Multiple-Input Multiple-Output Communication. IEEE J. Ocean. Eng. 2011, 36, 525–538. [Google Scholar] [CrossRef]
- Falconer, D.; Ariyavisitakul, S.L.; Benyamin-Seeyar, A.; Eidson, B. Frequency domain equalization for single-carrier broadband wireless systems. IEEE Commun. Mag. 2002, 40, 58–66. [Google Scholar] [CrossRef]
- IEEE Standard for Local and Metropolitan Area Networks, Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems; IEEE Standard 802.16 e-2005; IEEE: Piscataway, NJ, USA, 2006.
- Pancaldi, F.; Vitetta, G.M.; Kalbasi, R.; Al-Dhahir, N.; Uysal, M.; Mheidat, H. Single-carrier frequency domain equalization. IEEE Signal Process. Mag. 2008, 25, 37–56. [Google Scholar] [CrossRef]
- Yang, T.C.; Heaney, K.D. Network-Assisted underwater acoustic communications. In Proceedings of the Conference on Under Water Networks WUWNet ’12, Los Angeles, CA, USA, 5–6 November 2012. [Google Scholar]
- Higley, W.J.; Roux, P.; Kuperman, W.A.; Hodgkiss, W.S.; Song, H.C.; Akal, T.; Stevenson, M. Synthetic aperture time-reversal communications in shallow water: Experimental demonstration at sea. J. Acoust. Soc. Am. 2005, 118, 2365–2372. [Google Scholar] [CrossRef]
- Song, H.C.; Dzieciuch, M. Feasibility of global-scale synthetic aperture communications. J. Acoust. Soc. Am. 2009, 125, 8–10. [Google Scholar] [CrossRef] [PubMed]
- Song, H.C.; Hodgkiss, W.S.; Kuperman, W.A.; Akal, T.; Stevenson, M. High-rate synthetic aperture communications in shallow water. J. Acoust. Soc. Am. 2009, 126, 3057–3061. [Google Scholar] [CrossRef] [PubMed]
- Song, H.C.; Howe, B.M.; Brown, M.G.; Andrew, R.K. Diversity-based acoustic communication with a glider in deep water. J. Acoust. Soc. Am. 2014, 135, 1023–1026. [Google Scholar] [CrossRef] [PubMed]
- Song, H.C.; Hodgkiss, W.S.; Kang, T. Multi-carrier synthetic aperture communication in shallow water: Experimental results. J. Acoust. Soc. Am. 2011, 130, 3797–3802. [Google Scholar]
- Sun, B.W.; Guo, S. An Experiment On Passive Synthetic Aperture Time Reversal Communications in Shallow Water. AIP Conf. Proc. 2010, 1272, 420. [Google Scholar]
- Wang, Z.J.; Yu, L.; Huang, H.N. Applications of All-phase FFT in Motion Compensation for Synthetic-aperture Underwater Acoustic Communication System. J. Electron. Inf. Technol. 2013, 35, 2206–2212. [Google Scholar] [CrossRef]
- Sharif, B.S.; Neasham, J.; Hinton, O.R.; Adams, A.E. A computationally efficient Doppler compensation system for underwater acoustic communications. IEEE J. Ocean. Eng. 2000, 25, 52–61. [Google Scholar] [CrossRef]
- Gendron, P.J. Shallow water acoustic response and platform motion modeling via a hierarchical Gaussian mixture model. J. Acoust. Soc. Am. 2016, 139, 1923–1937. [Google Scholar] [CrossRef] [PubMed]
- Cotter, S.F.; Rao, B.D. Sparse channel estimation via matching pursuit with application to equalization. IEEE Trans. Commun. 2002, 50, 374–377. [Google Scholar] [CrossRef]
- Li, W.; Preisig, C. Estimation of rapidly time-varying sparse channels. IEEE J. Ocean. Eng. 2007, 32, 927–939. [Google Scholar] [CrossRef]
- Berger, C.R.; Wang, Z.; Huang, J.; Zhou, S. Application of compressive sensing to sparse channel estimation. IEEE Commun. Mag. 2010, 48, 164–174. [Google Scholar] [CrossRef]
- Meng, Q.; Huang, J.; Han, J.; He, C.; Ma, C. An improved direct adaptive multichannel turbo equalization scheme for underwater communications. In Proceedings of the OCEANS 2012—Yeosu, Yeosu, Korea, 21–24 May 2012; pp. 1–5. [Google Scholar]
- Pelekanakis, K.; Chitre, M. Robust Equalization of Mobile Underwater Acoustic Channels. IEEE J. Ocean. Eng. 2015, 40, 775–784. [Google Scholar] [CrossRef]
NFFT size | 512 |
Number of data symbol | 386 |
PN length | 126 |
Bandwidth | 4 kHz |
PN duration | 31 ms |
Symbol duration including PN | 128 ms |
Uncoded data rate (QPSK) | 5580 bps |
Uncoded spectral efficiency (QPSK) | 1.5 bits/s/Hz |
Coded data rate (QPSK) | 2790 bps |
Coded spectral efficiency (QPSK) | 0.70 bits/s/Hz |
Convolution code | (171, 133) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, C.; Xi, R.; Wang, H.; Jing, L.; Shi, W.; Zhang, Q. Single Carrier with Frequency Domain Equalization for Synthetic Aperture Underwater Acoustic Communications. Sensors 2017, 17, 1584. https://doi.org/10.3390/s17071584
He C, Xi R, Wang H, Jing L, Shi W, Zhang Q. Single Carrier with Frequency Domain Equalization for Synthetic Aperture Underwater Acoustic Communications. Sensors. 2017; 17(7):1584. https://doi.org/10.3390/s17071584
Chicago/Turabian StyleHe, Chengbing, Rui Xi, Han Wang, Lianyou Jing, Wentao Shi, and Qunfei Zhang. 2017. "Single Carrier with Frequency Domain Equalization for Synthetic Aperture Underwater Acoustic Communications" Sensors 17, no. 7: 1584. https://doi.org/10.3390/s17071584
APA StyleHe, C., Xi, R., Wang, H., Jing, L., Shi, W., & Zhang, Q. (2017). Single Carrier with Frequency Domain Equalization for Synthetic Aperture Underwater Acoustic Communications. Sensors, 17(7), 1584. https://doi.org/10.3390/s17071584