Non-Gaussian Resistance Fluctuations in Gold-Nanoparticle-Based Gas Sensors: An Appraisal of Different Evaluation Techniques
<p>Current–voltage characteristic of an AuNP-based gas sensor in synthetic air. The inset depicts the sensor.</p> "> Figure 2
<p>Time-dependent voltage fluctuations <span class="html-italic">u</span>(<span class="html-italic">t</span>) across an AuNP-based gas sensor exposed to the shown gases at the stated bias voltages (<span class="html-italic">U<sub>B</sub></span>).</p> "> Figure 2 Cont.
<p>Time-dependent voltage fluctuations <span class="html-italic">u</span>(<span class="html-italic">t</span>) across an AuNP-based gas sensor exposed to the shown gases at the stated bias voltages (<span class="html-italic">U<sub>B</sub></span>).</p> "> Figure 3
<p>Power spectral density <span class="html-italic">S</span>(<span class="html-italic">f</span>) of an AuNP-based sensor’s voltage fluctuations, multiplied by frequency <span class="html-italic">f</span> and normalized by the square of the sensor’s bias voltage <span class="html-italic">U<sub>B</sub></span>, upon exposure to the shown gases.</p> "> Figure 4
<p>Two-dimensional contour plots of the bispectrum function for voltage fluctuations recorded across an AuNP-based gas sensor exposed to the shown gases at the stated bias voltages (<span class="html-italic">U<sub>B</sub></span>). In each panel, the curves indicate equally-spaced color-coded constant values of the bispectrum function; they represent magnitudes ranging from a low limit (blue) to a high limit (yellow). Actual values of these limits are indicated by the colored vertical bars in the respective panels.</p> "> Figure 5
<p>Second spectra for voltage fluctuations across an AuNP-based gas sensor exposed to the shown gases at the stated bias voltage (<span class="html-italic">U<sub>B</sub></span>). The spectra were normalized to attain the same level at <span class="html-italic">f</span><sub>2</sub> = 0.19 Hz.</p> ">
Abstract
:1. Introduction
2. Experimental Set-Up and Results
3. Non-Gaussian Measures and Discussion
3.1. Bispectrum Function
3.2. Level-Crossing Statistics
3.3. Second Spectrum
3.4. Lévy-Stable Distribution
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mazzone, P.J. Exhaled volatile organic compounds as biomarkers for respiratory diseases. Eur. Respir. Monogr. 2010, 49, 130–140. [Google Scholar]
- Peng, G.; Tisch, U.; Adams, O.; Hakim, M.; Shehada, N.; Broza, Y.Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Haick, H. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol. 2009, 4, 669–673. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.-Q.; Broza, Y.Y.; Ionsecu, R.; Tisch, U.; Ding, L.; Liu, H.; Song, Q.; Pan, Y.-Y.; Xiong, F.-X.; Gu, K.-S.; et al. A nanomaterial-based breath test for distinguishing gastric cancer from benign gastric conditions. Br. J. Cancer 2013, 108, 941–950. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.K.; Robinson, A.; Miller, D.R.; Davis, M.J. Overview of sensors and needs for environmental monitoring. Sensors 2005, 5, 4–37. [Google Scholar] [CrossRef]
- Grönbeck, H.; Curioni, A.; Andreoni, W. Thiols and disulfides on the Au (111) surface: The headgroup-gold interaction. J. Am. Chem. Soc. 2000, 122, 3839–3842. [Google Scholar] [CrossRef]
- Granqvist, C.G.; Buhrman, R.A. Ultrafine metal particles. J. Appl. Phys. 1976, 47, 2200–2219. [Google Scholar] [CrossRef]
- Ederth, J.; Kish, L.B.; Olsson, E.; Granqvist, C.G. In situ electrical transport during isothermal annealing of nanocrystalline gold films. J. Appl. Phys. 2002, 91, 1529–1535. [Google Scholar] [CrossRef]
- Lentka, Ł.; Kotarski, M.; Smulko, J.; Cindemir, U.; Topalian, Z.; Granqvist, C.G.; Calavia, R.; Ionescu, R. Fluctuation-enhanced sensing with organically functionalized gold nanoparticle gas sensors targeting biomedical applications. Talanta 2016, 160, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Kish, L.B.; Vajtai, R.; Granqvist, C.G. Extracting information from noise spectra of chemical sensors: Single sensor electronic noses and tongues. Sens. Actuators B Chem. 2000, 71, 55–59. [Google Scholar] [CrossRef]
- Kotarski, M.M.; Smulko, J.M. Hazardous gases detection by fluctuation-enhanced gas sensing. Fluctuation Noise Lett. 2010, 9, 359–371. [Google Scholar] [CrossRef]
- Kotarski, M.; Smulko, J.; Czyżewski, A.; Melkonyan, S. Fluctuation-enhanced scent sensing using a single gas sensor. Sens. Actuators B Chem. 2011, 157, 85–91. [Google Scholar] [CrossRef]
- Weisz, P.B. Effect of electronic charge transfer between adsorbate and solid on chemisorption and catalysis. J. Chem. Phys. 1953, 21, 1531–1538. [Google Scholar] [CrossRef]
- Bendat, J.S.; Piersol, A.G. Random Data: Analysis and Measurement Procedures, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Kiwilszo, M.; Smulko, J. Pitting corrosion characterization by electrochemical noise measurements on asymmetric electrodes. J. Solid State Electrochem. 2009, 13, 1681–1686. [Google Scholar] [CrossRef]
- Schmera, G.; Kish, L.B. Fluctuation enhanced chemical sensing by surface acoustic wave devices. Fluct. Noise Lett. 2002, 2, L117–L123. [Google Scholar] [CrossRef]
- Mendel, J.M. Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications. Proc. IEEE 1991, 79, 278–305. [Google Scholar] [CrossRef]
- Smulko, J.; Granqvist, C.G.; Kish, L.B. On the statistical analysis of noise in chemical sensors and its application for sensing. Fluct. Noise Lett. 2001, 1, L147–L153. [Google Scholar] [CrossRef]
- Gingl, Z.; Kish, L.B.; Ayhan, B.; Kwan, C.; Granqvist, C.G. Fluctuation-enhanced sensing with zero-crossing analysis for high-speed and low-power applications. IEEE Sens. J. 2010, 10, 492–497. [Google Scholar] [CrossRef]
- Kolek, A. Digital estimation of second spectra. In Proceedings of the 23rd International Conference on Noise and Fluctuations, Xi’an, China, 2–6 June 2015; pp. 1–3. [Google Scholar]
- O’Brien, K.P.; Weissman, M.B. Statistical characterization of Barkhausen noise. Phys. Rev. E 1994, 50, 3446–3452. [Google Scholar] [CrossRef]
- Lévy, P. Calcul des Probabilités; Gauthier-Villars: Paris, France, 1925. [Google Scholar]
- NI PCI-4474. Available online: http://sine.ni.com/nips/cds/view/p/lang/pl/nid/12205 (accessed on 22 October 2015).
- Kotarski, M.; Smulko, J. Noise measurement setups for fluctuations enhanced gas sensing. Metrol. Meas. Syst. 2009, 16, 457–464. [Google Scholar]
- Voss, R.F. Linearity of 1/f noise mechanisms. Phys. Rev. Lett. 1978, 40, 913–916. [Google Scholar] [CrossRef]
- Yakimov, A.V.; Hooge, F.N. A simple test of the Gaussian character of noise. Physica B 2000, 291, 97–104. [Google Scholar] [CrossRef]
- Hung, K.K.; Ko, P.K.; Ho, C.; Cheng, Y.C. Random telegraph noise of deep-submicrometer MOSFET’s. IEEE Electr. Device Lett. 1990, 11, 90–92. [Google Scholar] [CrossRef]
- Pavelka, J.; Šikula, J.; Tacano, M.; Toita, M. Activation energy of RTS noise. Radioengineering 2011, 20, 194–199. [Google Scholar]
- Raoult, J.; Militaru, L.; Verdier, J.; Souifi, A. Time domain and frequency analysis of RTS noise in deep submicron SiGe HBTs. Nucl. Instrum. Meth. Phys. Res. B 2002, 186, 435–440. [Google Scholar] [CrossRef]
- Crook, R.; Jones, B.K. Noise and DC characteristics of power silicon diodes. Microelectron. Reliab. 1997, 37, 1635–1638. [Google Scholar] [CrossRef]
- Konczakowska, A.; Cichosz, J.; Szewczyk, A. A new method for identification of RTS noise. Bull. Pol. Acad. Sci. Tech. Sci. 2006, 54, 457–460. [Google Scholar]
- Hinich, M.J. Testing for Gaussianity and linearity of a stationary time series. J. Time Ser. Anal. 1982, 3, 169–176. [Google Scholar] [CrossRef]
- Swami, A.; Mendel, J.R.; Nikias, C.L. Higher-Order Spectral Analysis Toolbox User’s Guide; United Signals & Systems, Inc.: Compton, CA, USA, 1993. [Google Scholar]
- Painter, S. Random fractal models of heterogeneity: The Lévy-stable approach. Math. Geol. 1995, 27, 813–830. [Google Scholar] [CrossRef]
- Cabrera, J.L.; Bormann, R.; Eurich, C.; Ohira, T.; Milton, J. State-dependent noise and human balance control. Fluct. Noise Lett. 2004, 1, L107–L117. [Google Scholar] [CrossRef]
- Chechkin, A.V.; Sliusarenko, O.Yu.; Metzler, R.; Klafter, J. Barrier crossing driven by Lévy noise: Universality and the role of noise intensity. Phys. Rev. E 2007, 75, 041101. [Google Scholar] [CrossRef] [PubMed]
- Montroll, E.W.; Shlesinger, M.F. On 1/f noise and other distributions with long tails. Proc. Natl. Acad. Sci. USA 1982, 79, 3380–3383. [Google Scholar] [CrossRef] [PubMed]
- Eliazar, I.; Klafter, J. A unified and universal explanation for Lévy laws and 1/f noises. Proc. Natl. Acad. Sci. USA 2009, 106, 12251–12254. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Chen, W. A survey on computing Lévy stable distributions and a new MATLAB toolbox. Signal Process. 2013, 93, 242–251. [Google Scholar] [CrossRef]
UB = 5 V | UB = 11.3 V | |||||
---|---|---|---|---|---|---|
Synthetic Air (SA) | SA + 50 ppm Ethanol | SA + 1.5 ppm Formaldehyde | SA | SA + 50 ppm Ethanol | SA + 1.5 ppm Formaldehyde | |
Kurtosis [-] | 3.961 | 4.031 | 4.465 | 3.582 | 3.639 | 3.642 |
Skewness [-] | 0.589 | 0.592 | 0.518 | −0.133 | −0.116 | 0.961 |
UB = 5 V | UB = 11.3 V | |||||
---|---|---|---|---|---|---|
Synthetic Air (SA) | SA + 50 ppm Ethanol | SA + 1.5 ppm Formaldehyde | SA | SA + 50 ppm Ethanol | SA + 1.5 ppm Formaldehyde | |
[-] | 357,740 | 387,567 | 384,793 | 777,278 | 814,295 | 409,993 |
0.229 | 0.211 | 0.213 | 0.105 | 0.101 | 0.200 | |
[s2] | 3.35 × 10−7 | 3.06 × 10−7 | 3.33 × 10−7 | 3.60 × 10−8 | 2.76 × 10−8 | 1.42 × 10−7 |
UB = 5 V | UB = 11.3 V | |||||
---|---|---|---|---|---|---|
Synthetic air (SA) | SA + 50 ppm Ethanol | SA + 1.5 ppm Formaldehyde | SA | SA + 50 ppm Ethanol | SA + 1.5 ppm Formaldehyde | |
α [-] | 1.9699 | 1.9730 | 1.9727 | 1.6903 | 1.6999 | 1.4640 |
β [-] | 0.7315 | 0.7101 | 0.7281 | −0.3609 | −0.3459 | −0.0510 |
γ [-] | 0.0001 | 0.0001 | 0.0001 | 0.0008 | 0.0009 | 0.0008 |
δ [-] | 9.297 × 10−7 | 7.959 × 10−7 | 8.287 × 10−7 | −3.376 × 10−5 | −3.35 × 10−5 | −2.582 × 10−5 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lentka, Ł.; Smulko, J.; Kotarski, M.; Granqvist, C.-G.; Ionescu, R. Non-Gaussian Resistance Fluctuations in Gold-Nanoparticle-Based Gas Sensors: An Appraisal of Different Evaluation Techniques. Sensors 2017, 17, 757. https://doi.org/10.3390/s17040757
Lentka Ł, Smulko J, Kotarski M, Granqvist C-G, Ionescu R. Non-Gaussian Resistance Fluctuations in Gold-Nanoparticle-Based Gas Sensors: An Appraisal of Different Evaluation Techniques. Sensors. 2017; 17(4):757. https://doi.org/10.3390/s17040757
Chicago/Turabian StyleLentka, Łukasz, Janusz Smulko, Mateusz Kotarski, Claes-Göran Granqvist, and Radu Ionescu. 2017. "Non-Gaussian Resistance Fluctuations in Gold-Nanoparticle-Based Gas Sensors: An Appraisal of Different Evaluation Techniques" Sensors 17, no. 4: 757. https://doi.org/10.3390/s17040757
APA StyleLentka, Ł., Smulko, J., Kotarski, M., Granqvist, C.-G., & Ionescu, R. (2017). Non-Gaussian Resistance Fluctuations in Gold-Nanoparticle-Based Gas Sensors: An Appraisal of Different Evaluation Techniques. Sensors, 17(4), 757. https://doi.org/10.3390/s17040757