Nanostructured Tip-Shaped Biosensors: Application of Six Sigma Approach for Enhanced Manufacturing
<p>Nanotip geometry based on the fabrication methods: (<b>a</b>) conventional atomic force microscope (AFM) tips; (<b>b</b>) cone-shaped nanotip; (<b>c</b>) nanotip on a flat substrate; (<b>d</b>) nanotips grown on substrate; (<b>e</b>) nanotips fabricated by capillary action and an electric field; and (<b>f</b>) nanotip composed of an AFM tip attached with a nanowire or a nanotube. Panels (<b>a</b>–<b>c</b>) are fabricated by top down methods; panels (<b>d</b>,<b>e</b>) are fabricated by bottom-up methods; and panel (<b>f</b>) is fabricated by a hybrid method combining bottom-up and top-down methods.</p> "> Figure 2
<p>(<b>a</b>) (Left) Diagram illustrating a nanotube tip covalently modified with a biotin ligand (dark-grey triangle) interacting with streptavidin protein receptors (light-grey blocks). (Right) Representative force–displacement curve recorded with a biotin-modified nanotube tip on the streptavidin surface in pH 7.0 PBS. The inset represents the scale bar. The binding force is indicated by F<sub>b</sub>. Reproduced with permission from reference [<a href="#B31-sensors-17-00017" class="html-bibr">31</a>]. Copyright 1998 Nature; (<b>b</b>) (Left) AFM topography image of a nanoelectrode. (right) Cyclic voltammograms obtained for different electrodes recorded in solutions of Fc(CH<sub>2</sub>OH)<sub>2</sub> and FcTMA. Reproduced with permission from reference [<a href="#B25-sensors-17-00017" class="html-bibr">25</a>]. Copyright 2006 American Chemical Society; (<b>c</b>) (Left) Schematic of nanoneedle biosensor three-dimensional and side view of horizontal nanoneedles (Not drawn to Scale). (Top right) Optical micrograph of bird’s eye view of aluminum-polysilicon hybrid nanoneedle biosensor. (Bottom right) SEM image of the tip of a nanoneedle biosensor. Reproduced with permission from reference [<a href="#B26-sensors-17-00017" class="html-bibr">26</a>]. Copyright 2013 American Institute of Physics; (<b>d</b>) A schematic of the pathway for generating the SERS platform for efficient Raman signal enhancement. Reproduced with permission from reference [<a href="#B14-sensors-17-00017" class="html-bibr">14</a>]. Copyright 2011 Elsevier B.V.</p> "> Figure 3
<p>DMAIC phases of the Six Sigma approach; DMAIC represents Define, Measure, Analyze, Improve, and Control. This approach is adapted to improve the quality and the yield for nanotip fabrication process.</p> "> Figure 4
<p>Cause and effect diagram in the Analyze phase for a dendritic nanotip sensor. Equipment, process, operator, material, environment, and management are analyzed to improve yield and scalability. Among them, the red-circled contents of voltage and material usability are investigated in the paper.</p> "> Figure 5
<p>Nanotip fabrication method using an electric field and capillary action; Si nanowires are suspended in DMF. The suspension solution is hung on a metal coil. When a W-wire is withdrawn from the solution, a nanotip composed of Si nanowires is fabricated. The nanotip is again immersed in a SWCNT solution drop in order to coat SWCNTs.</p> "> Figure 6
<p>Surface functionalization procedure of nanotip. The nanotip is modified by immersion into a solution containing 1 mg/mL streptavidin for 2 min. The streptavidin coated nanotip is then incubated with biotinylated LNA probe for 5 min.</p> "> Figure 7
<p>(<b>a</b>) Device for DNA concentration with a nanotip; (<b>b</b>) a nanotip installed on a coupon is immersed into a concentration well (Magnified image of the yellow circle in <a href="#sensors-17-00017-f006" class="html-fig">Figure 6</a>a; (<b>c</b>) optical microscopic image of a dendritic nanotip (magnified image of the yellow circle in <a href="#sensors-17-00017-f006" class="html-fig">Figure 6</a>b); (<b>d</b>) fluorescence images of a DNA-captured nanotip; and (<b>e</b>) digitized image of the fluorescence images in <a href="#sensors-17-00017-f006" class="html-fig">Figure 6</a>c using a threshold value.</p> "> Figure 8
<p>Genomic DNA extraction procedure from cultured cells.</p> "> Figure 9
<p>Experimental procedure for DNA concentration and detection using a dendritic nanotip.</p> "> Figure 10
<p>Comparison of nanotip fabrication: 20 <span class="html-italic">V</span><sub>pp</sub> (<b>left</b>); and 30 <span class="html-italic">V</span><sub>pp</sub> (<b>right</b>). The Si nanowire clouds, attracted by the voltages, are expressed by the red lines. The inset shows the fabricated nanotips after withdrawal.</p> "> Figure 11
<p>Average lengths of nanotips for 7 days from the preparation date of a Si nanowire solution.</p> "> Figure 12
<p>With improving the manufacturing yield of nanotips, two nanotips are simultaneously fabricated using two fabrication setups.</p> "> Figure 13
<p>(<b>a</b>) Concentration time test (N = 3); (<b>b</b>) Specificity result with genomic DNA of MTB, <span class="html-italic">M. avium</span>, and <span class="html-italic">S. epidermidis</span> at various rinsing temperature (N = 3). The concentration of the bacteria before extraction is 10<sup>4</sup> CFU/mL. (<b>c</b>) Sensitivity test with MTB DNA (N = 3).</p> ">
Abstract
:1. Introduction
2. Nanostructured Tip Bio-Sensors
2.1. Fabrication and Nanotip Shapes
2.2. Nanotip-Based Biosensors and Potential Challenges
2.3. Six Sigma Approach and Its Application to Nanomanufacturing
3. Materials and Methods
3.1. Application of the Six Sigma Approach to Nanotip Fabrication
- Define phase: The goal is to improve the yield of a dendritic nanotip.
- Measure phase: The production yield of a nanotip is 20%. The shape of a nanotip is not uniform.
- Analyze phase: The electric field for tip fabrication can be low, and the medium for carbon nanotubes can be degraded, which can lower the production yield of a nanotip.
- Improve phase: A higher electric field is applied, and the medium for carbon nanotube suspension is refreshed weekly.
- Control phase: When the factors of an electric field and carbon nanotube medium are controlled, the yield is improved from 20% to 80%. The uniform shape is improved.
3.2. Materials
3.3. Nanotip Fabrication
3.4. Nanotip Funtionalization
3.5. Sequence Specific DNA Detection
4. Results
4.1. Dendritic Nanotip Fabrication with Six Sigma Approach
4.2. Sequence Specific DNA Ddetection
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ramanavicius, A.; Ramanaviciene, A.; Malinauskas, A. Electrochemical sensors based on conducting polymer-polypyrrole. Electrochim. Acta 2006, 51, 6025–6037. [Google Scholar] [CrossRef]
- Ferrier, D.C.; Shaver, M.P.; Hands, P.J.W. Micro- and nano-structure based oligonucleotide sensors. Biosens. Bioelectron. 2015, 68, 798–810. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Xu, H.X. Hot spots in different metal nanostructures for plasmon-enhanced raman spectroscopy. Nanoscale 2013, 5, 10794–10805. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.I.; Li, B.R.; Chen, Y.T. Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 2011, 6, 131–154. [Google Scholar] [CrossRef]
- Walcarius, A.; Minteer, S.D.; Wang, J.; Lin, Y.H.; Merkoci, A. Nanomaterials for bio-functionalized electrodes: Recent trends. J. Mater. Chem. B 2013, 1, 4878–4908. [Google Scholar] [CrossRef]
- Domke, K.F.; Zhang, D.; Pettinger, B. Tip-enhanced raman spectra of picomole quantities of DNA nucleobases at Au(111). J. Am. Chem. Soc. 2007, 129, 6708–6709. [Google Scholar] [CrossRef] [PubMed]
- Dimaki, M.; Vazquez, P.; Olsen, M.H.; Sasso, L.; Rodriguez-Trujillo, R.; Vedarethinam, I.; Svendsen, W.E. Fabrication and characterization of 3D micro- and nanoelectrodes for neuron recordings. Sensors 2010, 10, 10339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, R.; Ramakrishna, S.N.; Naik, V.V.; Chu, Z.; Drew, M.E.; Spencer, N.D.; Yamakoshi, Y. Versatile method for afm-tip functionalization with biomolecules: Fishing a ligand by means of an in situ click reaction. Nanoscale 2015, 7, 6599–6606. [Google Scholar] [CrossRef] [PubMed]
- Borzenets, I.V.; Yoon, I.; Prior, M.M.; Donald, B.R.; Mooney, R.D.; Finkelstein, G. Ultra-sharp metal and nanotube-based probes for applications in scanning microscopy and neural recording. J. Appl. Phys. 2012, 111, 074703. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Lian, X. Rapid fabrication of high-aspect-ratio platinum microprobes by electrochemical discharge etching. Materials 2016, 9, 233. [Google Scholar] [CrossRef]
- Tang, J.; Gao, B.; Geng, H.Z.; Velev, O.D.; Qin, L.C.; Zhou, O. Assembly of id nanostructures into sub-micrometer diameter fibrils with controlled and variable length by dielectrophoresis. Adv. Mater. 2003, 15, 1352–1355. [Google Scholar] [CrossRef]
- Xia, Y.; Rogers, J.A.; Paul, K.E.; Whitesides, G.M. Unconventional methods for fabricating and patterning nanostructures. Chem. Rev. 1999, 99, 1823–1848. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.-J.; Kim, K.H.; Baek, Y.-K.; Kim, D.W.; Jung, H.-T. New top-down approach for fabricating high-aspect-ratio complex nanostructures with 10 nm scale features. Nano Lett. 2010, 10, 3604–3610. [Google Scholar] [CrossRef] [PubMed]
- Lo, H.C.; Hsiung, H.I.; Chattopadhyay, S.; Han, H.C.; Chen, C.F.; Leu, J.P.; Chen, K.H.; Chen, L.C. Label free sub-picomole level DNA detection with ag nanoparticle decorated au nanotip arrays as surface enhanced raman spectroscopy platform. Biosens. Bioelectron. 2011, 26, 2413–2418. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.-H.; Lee, G.-J.; Kim, W.-S.; Lim, H.-E.; Mativenga, M.; Park, K.-C.; Park, H.-K. All-carbon electrode consisting of carbon nanotubes on graphite foil for flexible electrochemical applications. Materials 2014, 7, 1975. [Google Scholar] [CrossRef]
- Ghane Motlagh, B.; Choueib, M.; Hajhosseini Mesgar, A.; Hasanuzzaman, M.; Sawan, M. Direct growth of carbon nanotubes on new high-density 3D pyramid-shaped microelectrode arrays for brain-machine interfaces. Micromachines 2016, 7, 163. [Google Scholar] [CrossRef]
- Yoon, Y.; Lee, G.; Yoo, K.; Lee, J.-B. Fabrication of a microneedle/CNT hierarchical micro/nano surface electrochemical sensor and its in-vitro glucose sensing characterization. Sensors 2013, 13, 16672. [Google Scholar] [CrossRef] [PubMed]
- An, T.; Choi, W.; Lee, E.; Kim, I.-T.; Moon, W.; Lim, G. Fabrication of functional micro- and nanoneedle electrodes using a carbon nanotube template and electrodeposition. Nanoscale Res. Lett. 2011, 6, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Hafner, J.H.; Cheung, C.-L.; Oosterkamp, T.H.; Lieber, C.M. High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies. J. Phys. Chem. B 2001, 105, 743–746. [Google Scholar] [CrossRef]
- Hafner, J.H.; Cheung, C.L.; Woolley, A.T.; Lieber, C.M. Structural and functional imaging with carbon nanotube afm probes. Prog. Biophys. Mol. Biol. 2001, 77, 73–110. [Google Scholar] [CrossRef]
- Cheung, C.L.; Hafner, J.H.; Lieber, C.M. Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging. Proc. Natl. Acad. Sci. USA 2000, 97, 3809–3813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Florin, E.L.; Rief, M.; Lehmann, H.; Ludwig, M.; Dornmair, C.; Moy, V.T.; Gaub, H.E. Sensing specific molecular-interactions with the atomic-force microscope. Biosens. Bioelectron. 1995, 10, 895–901. [Google Scholar] [CrossRef]
- Kueng, A.; Kranz, C.; Lugstein, A.; Bertagnolli, E.; Mizaikoff, B. Afm-tip-integrated amperometric microbiosensors: High-resolution imaging of membrane transport. Angew. Chem. Int. Ed. 2005, 44, 3419–3422. [Google Scholar] [CrossRef] [PubMed]
- Yum, K.; Wang, N.; Yu, M.F. Nanoneedle: A multifunctional tool for biological studies in living cells. Nanoscale 2010, 2, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Krapf, D.; Wu, M.Y.; Smeets, R.M.M.; Zandbergen, H.W.; Dekker, C.; Lemay, S.G. Fabrication and characterization of nanopore-based electrodes with radii down to 2 nm. Nano Lett. 2006, 6, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Esfandyarpour, R.; Javanmard, M.; Koochak, Z.; Esfandyarpour, H.; Harris, J.S.; Davis, R.W. Label-free electronic probing of nucleic acids and proteins at the nanoscale using the nanoneedle biosensor. Biomicrofluidics 2013, 7, 044114. [Google Scholar] [CrossRef] [PubMed]
- Esfandyarpour, R.; Yang, L.; Koochak, Z.; Harris, J.S.; Davis, R.W. Nanoelectronic three-dimensional (3D) nanotip sensing array for real-time, sensitive, label-free sequence specific detection of nucleic acids. Biomed. Microdevices 2016, 18, 7. [Google Scholar] [CrossRef] [PubMed]
- Giannetti, A.; Barucci, A.; Cosi, F.; Pelli, S.; Tombelli, S.; Trono, C.; Baldini, F. Optical fiber nanotips coated with molecular beacons for DNA detection. Sensors 2015, 15, 9666–9680. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Gan, Z.H.; Zhuang, Q.K. Electrochemical sensors based on carbon nanotubes. Electroanalysis 2002, 14, 1609–1613. [Google Scholar] [CrossRef]
- Campbell, J.K.; Sun, L.; Crooks, R.M. Electrochemistry using single carbon nanotubes. J. Am. Chem. Soc. 1999, 121, 3779–3780. [Google Scholar] [CrossRef]
- Wong, S.S.; Joselevich, E.; Woolley, A.T.; Cheung, C.L.; Lieber, C.M. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 1998, 394, 52–55. [Google Scholar] [PubMed]
- Boo, H.; Jeong, R.A.; Park, S.; Kim, K.S.; An, K.H.; Lee, Y.H.; Han, J.H.; Kim, H.C.; Chung, T.D. Electrochemical nanoneedle biosensor based on multiwall carbon nanotube. Anal. Chem. 2006, 78, 617–620. [Google Scholar] [CrossRef] [PubMed]
- Jouzi, M.; Kerby, M.B.; Tripathi, A.; Xu, J. Nanoneedle method for high-sensitivity low-background monitoring of protein activity. Langmuir 2008, 24, 10786–10790. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Ibupoto, Z.H.; Abbasi, M.A.; Liu, X.J.; Nur, O.; Willander, M. Synthesis of three dimensional nickel cobalt oxide nanoneedles on nickel foam, their characterization and glucose sensing application. Sensors 2014, 14, 5415–5425. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.H.; Lu, F.; Tu, Y.; Ren, Z.F. Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett. 2004, 4, 191–195. [Google Scholar] [CrossRef]
- Vitol, E.A.; Orynbayeva, Z.; Friedman, G.; Gogotsi, Y. Nanoprobes for intracellular and single cell surface-enhanced raman spectroscopy (SERS). J. Raman Spectrosc. 2012, 43, 817–827. [Google Scholar] [CrossRef]
- Yeo, W.H.; Lee, H.B.; Kim, J.H.; Lee, K.H.; Chung, J.H. Nanotip analysis for dielectrophoretic concentration of nanosized viral particles. Nanotechnology 2013, 24, 185502. [Google Scholar] [CrossRef] [PubMed]
- Yeo, W.-H.; Kopacz, A.M.; Kim, J.-H.; Chen, X.; Wu, J.; Gao, D.; Lee, K.-H.; Liu, W.-K.; Chung, J.-H. Dielectrophoretic concentration of low-abundance nanoparticles using a nanostructured tip. Nanotechnology 2012, 23, 485707. [Google Scholar] [CrossRef] [PubMed]
- Kopacz, A.M.; Yeo, W.-H.; Chung, J.-H.; Liu, W.K. Nanoscale sensor analysis using the immersed molecular electrokinetic finite element method. Nanoscale 2012, 4, 5189–5194. [Google Scholar] [CrossRef] [PubMed]
- Yeo, W.H.; Chung, J.H.; Liu, Y.L.; Lee, K.H. Size-specific concentration of DNA to a nanostructured tip using dielectrophoresis and capillary action. J. Phys. Chem. B 2009, 113, 10849–10858. [Google Scholar] [CrossRef] [PubMed]
- Yeo, W.-H.; Chou, F.-L.; Fotouhi, G.; Oh, K.; Stevens, B.T.; Tseng, H.-Y.; Gao, D.; Shen, A.Q.; Chung, J.-H.; Lee, K.-H. Size-selective immunofluorescence of mycobacterium tuberculosis cells by capillary- and viscous forces. Lab Chip 2010, 10, 3178–3181. [Google Scholar] [CrossRef] [PubMed]
- Kalyanasundaram, D.; Kim, J.-H.; Fotouhi, G.; Lee, H.-B.; Hiraiwa, M.; Oh, K.; Lee, K.-H.; Chung, J.-H. Nanotips for single-step preparation of DNA for qpcr analysis. Analyst 2013, 138, 3135–3138. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Hiraiwa, M.; Lee, H.-B.; Lee, K.-H.; Cangelosi, G.A.; Chung, J.-H. Electrolyte-free amperometric immunosensor using a dendritic nanotip. RSC Adv. 2013, 3, 4281–4287. [Google Scholar] [CrossRef] [PubMed]
- Shankar, R. Process Improvement Using Six Sigma a Dmaic Guide; ASQ Quality Press: Milwaukee, WI, USA, 2009. [Google Scholar]
- Genis, V.; Mauk, M.; Gogotsi, Y.; Sakalley, D.; Hagarman, J.; Burnside, H. Lean six sigma nanomanufacturing course for undergraduate engineering technology and engineering programs. J. Eng. Technol. 2010, 27, 18–29. [Google Scholar]
- Kim, J.-H.; Yeo, W.-H.; Shu, Z.; Soelberg, S.D.; Inoue, S.; Kalyanasundaram, D.; Ludwig, J.; Furlong, C.E.; Riley, J.J.; Weigel, K.M.; et al. Immunosensor towards low-cost, rapid diagnosis of tuberculosis. Lab Chip 2012, 12, 1437–1440. [Google Scholar] [CrossRef] [PubMed]
- Braasch, D.A.; Corey, D.R. Locked nucleic acid (LNA): Fine-tuning the recognition of DNA and RNA. Chem. Biol. 2001, 8, 1–7. [Google Scholar] [CrossRef]
- Vester, B.; Wengel, J. LNA (locked nucleic acid): High-affinity targeting of complementary RNA and DNA. Biochemistry 2004, 43, 13233–13241. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kahng, S.-J.; Kim, J.-H.; Chung, J.-H. Nanostructured Tip-Shaped Biosensors: Application of Six Sigma Approach for Enhanced Manufacturing. Sensors 2017, 17, 17. https://doi.org/10.3390/s17010017
Kahng S-J, Kim J-H, Chung J-H. Nanostructured Tip-Shaped Biosensors: Application of Six Sigma Approach for Enhanced Manufacturing. Sensors. 2017; 17(1):17. https://doi.org/10.3390/s17010017
Chicago/Turabian StyleKahng, Seong-Joong, Jong-Hoon Kim, and Jae-Hyun Chung. 2017. "Nanostructured Tip-Shaped Biosensors: Application of Six Sigma Approach for Enhanced Manufacturing" Sensors 17, no. 1: 17. https://doi.org/10.3390/s17010017
APA StyleKahng, S. -J., Kim, J. -H., & Chung, J. -H. (2017). Nanostructured Tip-Shaped Biosensors: Application of Six Sigma Approach for Enhanced Manufacturing. Sensors, 17(1), 17. https://doi.org/10.3390/s17010017