SAR Ground Moving Target Indication Based on Relative Residue of DPCA Processing
<p>Clutter statistical distribution analysis. (<b>a</b>) 1th channel clutter image; (<b>b</b>) Interferogram amplitude and phase; (<b>c</b>) RR-DPCA image; (<b>d</b>) RR-DPCA amplitude histogram.</p> "> Figure 1 Cont.
<p>Clutter statistical distribution analysis. (<b>a</b>) 1th channel clutter image; (<b>b</b>) Interferogram amplitude and phase; (<b>c</b>) RR-DPCA image; (<b>d</b>) RR-DPCA amplitude histogram.</p> "> Figure 2
<p>RR-DPCA histogram and its estimated PDF versus the size of window. (<b>a</b>) <span class="html-italic">L</span> = 1; (<b>b</b>) <span class="html-italic">L</span> = 3; (<b>c</b>) <span class="html-italic">L</span> = 5; (<b>d</b>) <span class="html-italic">L</span> = 7.</p> "> Figure 2 Cont.
<p>RR-DPCA histogram and its estimated PDF versus the size of window. (<b>a</b>) <span class="html-italic">L</span> = 1; (<b>b</b>) <span class="html-italic">L</span> = 3; (<b>c</b>) <span class="html-italic">L</span> = 5; (<b>d</b>) <span class="html-italic">L</span> = 7.</p> "> Figure 3
<p>RR-DPCA versus the size of window. (<b>a</b>) Maximum RR-DPCA value versus <span class="html-italic">L</span>; (<b>b</b>) Maximum RR-DPCA value versus <span class="html-italic">L</span>.</p> "> Figure 4
<p>Flowchart of proposed method based on RR-DPCA.</p> "> Figure 5
<p>The results of the proposed RR-DPCA method based on simulated data. (<b>a</b>) 1th channel SAR image; (<b>b</b>) CFAR result of DPCA; (<b>c</b>) CFAR result of RR-DPCA.</p> "> Figure 6
<p>Point moving targets detection probability versus SCR with <span class="html-italic">P<sub>fa</sub></span> = 10<sup>−6</sup>. (<b>a</b>) <span class="html-italic">v<sub>r</sub></span> = 3.6 m/s; (<b>b</b>) <span class="html-italic">v<sub>r</sub></span> = 0.3 m/s; (<b>c</b>) <span class="html-italic">v<sub>r</sub></span> = 0.1 m/s; (<b>d</b>) <span class="html-italic">v<sub>r</sub></span> = 0.05 m/s.</p> "> Figure 7
<p>GMTI and CFAR results of different methods. (<b>a</b>) SAR image of the 1th channel; (<b>b</b>) Outputs of DPCA; (<b>c</b>) Outputs of ATI; (<b>d</b>) Outputs of RR-DPCA.</p> "> Figure 8
<p>RR-DPCA histogram and estimated Rayleigh PDF of the real data.</p> ">
Abstract
:1. Introduction
2. The Proposed RR-DPCA Method
2.1. DPCA Processing
2.2. RR-DPCA Processing
3. RR-DPCA Performance Analysis
3.1. Clutter Statistical Distribution Model of RR-DPCA
3.2. Influence of the Window Size
3.3. Flowchart of the RR-DPCA Based Method
- (Step 1)
- Focusing the two channel echoes using a SAR imaging algorithm. Then DPCA can be implemented after co-registration between the two SAR images.
- (Step 2)
- Calculating the multi-look images of the two channel by Equation (7). The size of window should be larger than 1, but don’t need to be too large.
- (Step 3)
- Acquiring the RR-DPCA jointly utilizing the DPCA outputs and the multi-look images by Equation (6).
- (Step 4)
- The CFAR is applied for RR-DPCA to accomplish the target detection. Under the homogenous clutter background, the CA-CFAR can be implemented based on Rayleigh distribution. Notice that the window in CFAR is hollow-stencil, whereas that in the calculation of multi-look SAR image is solid-stencil.
4. Experiments Results
4.1. Simulated Data
4.1.1. Scene Simulation
4.1.2. Performance Analysis of Point Moving Targets
4.2. Real Data
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dragosevic, M.V.; Burwash, W.; Chiu, S. Detection and estimation with RADARSAT-2 moving-object detection experiment modes. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3527–3543. [Google Scholar] [CrossRef]
- Cerutti-Maori, D.; Klare, J.; Brenner, A.R.; Ender, J.H.G. Wide-area traffic monitoring with the SAR/GMTI system PAMIR. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3019–3030. [Google Scholar] [CrossRef]
- Siegmund, R.; Mingquan, B.; Lehner, S.; Mayerle, R. First demonstration of surface currents imaged by hybrid along- and cross-track interferometric SAR. IEEE Trans. Geosci. Remote Sens. 2004, 42, 511–519. [Google Scholar] [CrossRef]
- Barbarossa, S. Detection and imaging of moving objects with synthetic aperture radar. Optimal detection and parameter estimation theory. IEEE Proc. F Radar Signal Process. 1992, 139, 79–88. [Google Scholar] [CrossRef]
- Barbarossa, S.; Farina, A. Detection and imaging of moving objects with synthetic aperture radar. Joint time-frequency analysis by Wigner-Ville distribution. Proc. Inst. Electr. Eng. F 1992, 139, 89–97. [Google Scholar] [CrossRef]
- Moreira, J.R.; Keydel, W. A new MTI-SAR approach using the reflectivity displacement method. IEEE Trans. Geosci. Remote Sens. 1995, 33, 1238–1244. [Google Scholar] [CrossRef]
- Fienup, J.R. Detecting moving targets in SAR imagery by focusing. IEEE Trans. Aerosp. Electron. Syst. 2001, 37, 794–809. [Google Scholar] [CrossRef]
- Bacci, A.; Martorella, M.; Gray, D.A.; Gelli, S.; Berizzi, F. Virtual multichannel SAR for ground moving target imaging. IET Radar Sonar Navig. 2016, 10, 50–62. [Google Scholar] [CrossRef]
- Cerutti-Maori, D.; Sikaneta, I. A generalization of DPCA processing for multichannel SAR/GMTI radars. IEEE Trans. Geosci. Remote Sens. 2013, 51, 560–572. [Google Scholar] [CrossRef]
- Chiu, S.; Livingstone, C. A comparison of displaced phase centre antenna and along-track interferometry techniques for RADARSAT-2 ground moving target indication. Can. J. Remote Sens. 2005, 31, 37–51. [Google Scholar] [CrossRef]
- Gao, G.; Wang, X.Y.; Lai, T. Detection of moving ships based on a combination of magnitude and phase in along-track interferometric SAR-Part II: Statistical modeling and CFAR detection. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3582–3599. [Google Scholar] [CrossRef]
- Gao, G.; Wang, X.Y.; Lai, T. Detection of moving ships based on a combination of magnitude and phase in along-track interferometric SAR-Part I: SIMP metric and its performance. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3565–3581. [Google Scholar] [CrossRef]
- Gierull, C.H. Statistical analysis of multilook SAR interferograms for CFAR detection of ground moving targets. IEEE Trans. Geosci. Remote Sens. 2004, 42, 691–701. [Google Scholar] [CrossRef]
- Moccia, A.; Rufino, G. Spaceborne along-track SAR interferometry: Performance analysis and mission scenarios. IEEE Trans. Aerosp. Electron. Syst. 2001, 37, 199–213. [Google Scholar] [CrossRef]
- Ender, J.H.G. Space-time processing for multichannel synthetic aperture radar. Inst. Electr. Eng. Electron. Commun. Eng. J. 1999, 11, 29–38. [Google Scholar] [CrossRef]
- Suo, Z.Y.; Li, Z.F.; Bao, Z. Multi-channel SAR-GMTI method robust to coregistration error of SAR images. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 2035–2043. [Google Scholar] [CrossRef]
- Shu, Y.X.; Liao, G.S.; Yang, Z.W. Robust radial velocity estimation of moving targets based on adaptive data reconstruction and subspace projection algorithm. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1101–1105. [Google Scholar] [CrossRef]
- Sjogren, T.K.; Viet Thuy, V.; Pettersson, M.I.; Feng, W.; Murdin, D.J.G.; Gustavsson, A.; Ulander, L.M.H. Suppression of clutter in multichannel SAR GMTI. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4005–4013. [Google Scholar] [CrossRef]
- Friedlander, B.; Porat, B. VSAR: A high resolution radar system for detection of moving targets. IEEE Proc. Radar Sonar Navig. 1997, 144, 205–218. [Google Scholar] [CrossRef]
- Friedlander, B.; Porat, B. VSAR: A high resolution radar system for ocean imaging. IEEE Trans. Aerosp. Electron. Syst. 1998, 34, 755–776. [Google Scholar] [CrossRef]
- Xu, J.; Li, G.; Peng, Y.N.; Xia, X.-G.; Wang, Y.L. Parametric velocity synthetic aperture radar: Signal modeling and optimal methods. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2463–2480. [Google Scholar] [CrossRef]
- Xu, J.; Li, G.; Peng, Y.N.; Xia, X.-G.; Wang, Y.L. Parametric velocity synthetic aperture radar: Multilook processing and its applications. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3488–3502. [Google Scholar] [CrossRef]
- Bacci, A.; Martorella, M.; Gray, D.A.; Berizzi, F. Space-Doppler adaptive processing for radar imaging of moving targets masked by ground clutter. IET Radar Sonar Navig. 2015, 9, 712–726. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Zebker, H.A. Interferometric radar measurement of ocean surface currents. Nature 1987, 328, 707–709. [Google Scholar] [CrossRef]
- Romeiser, R.; Runge, H.; Suchandt, S.; Sprenger, J.; Weilbeer, H.; Sohrmann, A.; Stammer, D. Current measurements in rivers by spaceborne along-track InSAR. IEEE Trans. Geosci. Remote Sens. 2007, 45, 4019–4031. [Google Scholar] [CrossRef]
- Romeiser, R.; Runge, H.; Suchandt, S.; Kahle, R.; Rossi, C.; Bell, P.S. Quality assessment of surface current fields from TerraSAR-X and TanDEM-X along-track interferometry and Doppler centroid analysis. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2759–2772. [Google Scholar] [CrossRef]
- Gierull, C.H.; Sikaneta, I.; Cerutti-Maori, D. Two-step detector for RADARSAT-2’s experimental GMTI mode. IEEE Trans. Geosci. Remote Sens. 2013, 51, 436–454. [Google Scholar] [CrossRef]
- Xu, J.; Zuo, Y.; Xia, B.; Xia, X.-G.; Peng, Y.N.; Wang, Y.L. Ground moving target signal analysis in complex image domain for multichannel SAR. IEEE Trans. Geosci. Remote Sens. 2012, 50, 538–552. [Google Scholar] [CrossRef]
- Xu, J.; Peng, Y.N.; Wan, Q.; Wang, X.T.; Xia, X.-G. Doppler distributed clutter model of airborne radar and its parameters estimation. Sci. China Ser. F Inf. Sci. 2004, 47, 577–586. [Google Scholar] [CrossRef]
- Sadjadi, A.F.A. Experimental design methodology: The scientific tool for performance evaluation. In Proceedings of the SPIE 1310, Signal and Image Processing Systems Performance Evaluation, Orlando, FL, USA, 16–20 April 1990.
- Yan, H.C.; Xu, J.; Xia, X.-G.; Liu, F.; Peng, S.B.; Zhang, X.D.; Long, T. Wideband underwater sonar imaging via compressed sensing with scaling effect compensation. Sci. China: Inf. Sci. 2015, 58, 1–11. [Google Scholar] [CrossRef]
- Meng, C.Z.; Xu, J.; Xia, X.-G.; Long, T.; Mao, E.K.; Yang, J.; Peng, Y.N. MIMO-SAR waveforms separation in same frequency area based on virtual polarization filter. Sci. China Inf. Sci. 2015, 58, 1–12. [Google Scholar]
Statistics | Value | ||||
---|---|---|---|---|---|
Mean value | Theoretical | 0.8862 | 0.8862 | 0.0929 | 0.1049 |
Measured | 0.8854 | 0.8852 | 0.0926 | 0.1057 | |
Error | 0.0008 | 0.0010 | 0.0003 | 0.0008 | |
Variance | Theoretical | 0.2146 | 0.2146 | 0.0024 | 0.0031 |
Measured | 0.2139 | 0.2139 | 0.0023 | 0.0032 | |
Error | 0.0007 | 0.0007 | 0.0001 | 0.0001 |
Value | Target 1 | Target 2 | Target 3 | Target 4 | River |
---|---|---|---|---|---|
Size (pixels) | 4 × 4 | 4 × 4 | 4 × 4 | 4 × 4 | 20 width |
Velocity (m/s) | 3 | 3 | 3 | 3 | 1 |
SCR (dB) | 0 | −2.5 | −5 | −7 | −20 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Huang, Z.; Yan, L.; Zhou, X.; Zhang, F.; Long, T. SAR Ground Moving Target Indication Based on Relative Residue of DPCA Processing. Sensors 2016, 16, 1676. https://doi.org/10.3390/s16101676
Xu J, Huang Z, Yan L, Zhou X, Zhang F, Long T. SAR Ground Moving Target Indication Based on Relative Residue of DPCA Processing. Sensors. 2016; 16(10):1676. https://doi.org/10.3390/s16101676
Chicago/Turabian StyleXu, Jia, Zuzhen Huang, Liang Yan, Xu Zhou, Furu Zhang, and Teng Long. 2016. "SAR Ground Moving Target Indication Based on Relative Residue of DPCA Processing" Sensors 16, no. 10: 1676. https://doi.org/10.3390/s16101676
APA StyleXu, J., Huang, Z., Yan, L., Zhou, X., Zhang, F., & Long, T. (2016). SAR Ground Moving Target Indication Based on Relative Residue of DPCA Processing. Sensors, 16(10), 1676. https://doi.org/10.3390/s16101676