Global Navigation Satellite System Multipath Mitigation Using a Wave-Absorbing Shield
<p>Structure (<b>a</b>) and photo (<b>b</b>) of the wave-absorbing shield (in <a href="#sensors-16-01332-f001" class="html-fig">Figure 1</a>a, green represents the wave-absorbing material, blue represents the wave-absorbing isolation plate, gray represents the support structure, the circular shape represents the choke-ring antenna).</p> "> Figure 2
<p>SHA1 site: without (<b>a</b>) and with (<b>b</b>) the wave-absorbing shield; KUN1 site: without (<b>c</b>) and with (<b>d</b>) the wave-absorbing shield.</p> "> Figure 3
<p>Sky plot of three constellations after the wave-absorbing shield installation at the KUN1 site on 11 May 2016, and SHA1 site (down) on 4 May 2016. KUN1: BDS (<b>a</b>); GPS (<b>b</b>) and GLONASS (<b>c</b>); SHA1: BDS (<b>d</b>); GPS (<b>e</b>) and GLONASS (<b>f</b>). The cutoff elevation is 5°.</p> "> Figure 4
<p>The number of valid observations from KUN1 (<b>a</b>) and SHA1 (<b>b</b>) sites for all satellites before and after the wave-absorbing shield installation (the length of each series is 7 days, interval is 30 s).</p> "> Figure 5
<p>Standard deviations of the code multipath for all available satellites and comparison of states before and after mitigation. KUN1: BDS (<b>a</b>), GPS (<b>b</b>) and GLONASS (<b>c</b>); SHA1: BDS (<b>d</b>), GPS (<b>e</b>) and GLONASS (<b>f</b>).</p> "> Figure 5 Cont.
<p>Standard deviations of the code multipath for all available satellites and comparison of states before and after mitigation. KUN1: BDS (<b>a</b>), GPS (<b>b</b>) and GLONASS (<b>c</b>); SHA1: BDS (<b>d</b>), GPS (<b>e</b>) and GLONASS (<b>f</b>).</p> "> Figure 6
<p>Comparison of code multipath against elevation angles for BDS IGSO and MEO (<b>a</b>); GPS (<b>b</b>); and GLONASS (<b>c</b>) at SHA1 site. Red and black represent before and after mitigation, respectively.</p> "> Figure 7
<p>Standard deviation of the code multipath against elevation for three constellations on all available frequencies and comparison of states before and after mitigation. KUN1: BDS (<b>a</b>); GPS (<b>b</b>) and GLONASS (<b>c</b>); SHA1: BDS (<b>d</b>); GPS (<b>e</b>) and GLONASS (<b>f</b>).</p> "> Figure 8
<p>Multipath on all frequencies and elevations for BDS GEO satellites, and comparison of states before and after mitigation at KUN1 (<b>a</b>) and SHA1 (<b>b</b>).</p> "> Figure 9
<p>Multipaths of B1, B2, and B3 code and elevations for the BDS GEO satellites C03 at KNU1 (<b>a</b>) and SHA1 (<b>b</b>) sites, and comparison of states before and after mitigation. The data gaps represent the date of the wave-absorbing shield installation.</p> "> Figure 10
<p>Multipaths of B1, B2, and B3 code and elevations for KUN1: IGSO C08 (<b>a</b>) and SHA1 IGSO C08 (<b>b</b>); MEO G30 (<b>c</b>) and MEO R09 (<b>d</b>); and comparison of states before and after mitigation. The data gaps represent the date of the wave-absorbing shield installation.</p> "> Figure 10 Cont.
<p>Multipaths of B1, B2, and B3 code and elevations for KUN1: IGSO C08 (<b>a</b>) and SHA1 IGSO C08 (<b>b</b>); MEO G30 (<b>c</b>) and MEO R09 (<b>d</b>); and comparison of states before and after mitigation. The data gaps represent the date of the wave-absorbing shield installation.</p> "> Figure 11
<p>Standard deviations of BDS, GPS and GLONASS SPP solution of KUN1 (<b>a</b>) and SHA1 (<b>b</b>) with respect to GPS precision point positioning (PPP) coordinates. Day 129 and day 119 are the dates of the wave-absorbing shield installations for KUN1and SHA1 sites, respectively.</p> ">
Abstract
:1. Introduction
2. Wave-Absorbing Shield
3. Measurement Collection and Validity
4. Multipath Observations and Analysis
5. Single-Point Positioning Results
- BDS: north, east, up, and three-dimensional
- ○
- SHA1: 15, 31, 64 cm, and 0.72 m
- ○
- KUN1: 7, 15, 106 cm, and 1.07 m
- GPS: north, east, up, and three-dimensional
- ○
- SHA1: 62, 11, 48 cm, and 0.79 m
- ○
- KUN1: 27, 16, 56 cm, and 0.63 m
- GLONASS: north, east, up, and three-dimensional
- ○
- SHA1: 19, 33, 63 cm, and 0.73 m
- ○
- KUN1. 33, 28, 23cm, and 0.49 m
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dai, W.J.; Ding, X.L.; Zhu, J.J. Comparing GPS stochastic models based on observation quality indices. Geomat. Inf. Sci. Wuhan Univ. 2008, 33, 718–722. [Google Scholar]
- Bilich, A.; Larson, K.M. Mapping the GPS multi-path environment using the signal-to-noise Ratio (SNR). Radio Sci. 2007, 42, 1–16. [Google Scholar] [CrossRef]
- Montenbruck, O.; Hauschild, A.; Steigenberger, P.; Langley, R.B. Three’s the challenge. GPS World 2010, 21, 8–19. [Google Scholar]
- Zhang, X.H.; Ding, L.L. Quality Analysis of the second generation Compass observables and stochastic model refining. Geomat. Inf. Sci. Wuhan Univ. 2013, 38, 832–836. [Google Scholar]
- Li, M.; Qu, L.Z.; Zhao, Q.L.; Guo, J.; Su, X.; Li, X.T. Precise Point Positioning with the BeiDou Navigation Satellite System. Sensors 2014, 14, 927–943. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.L.; Wang, G.X.; Hu, Z.G.; Dai, Z.Q. Analysis of BeiDou satellite measurements with code multipath and geometry-free ionosphere-free combinations. Sensors 2016, 16, 123. [Google Scholar] [CrossRef] [PubMed]
- Garrett, S.; Sunil, B. Reduction of PPP convergence period through pseudorange multipath and noise mitigation. GPS Solut. 2014. [Google Scholar] [CrossRef]
- Geng, J.; Bock, Y. Triple-frequency GPS precise point positioning with rapid ambiguity resolution. J. Geod. 2013. [Google Scholar] [CrossRef]
- WU, X.L.; ZHOU, J.H.; WANG, G.; HU, X.G. Multipath error detection and correction for GEO/IGSO satellites. Sci. Sin. Phys. Mech. Astron. 2012, 55, 1297–1306. [Google Scholar] [CrossRef]
- Wang, G.X.; Jong, K.D.; Zhao, Q.L. Multipath analysis of code measurements for BeiDou geostationary satellites. GPS Solut. 2015, 19, 129–139. [Google Scholar] [CrossRef]
- Wang, M.; Chai, H.Z.; Liu, J.; Zeng, A.M. BDS relative static positioning over long baseline improved by GEO multipath mitigation. Adv. Space Res. 2016, 57, 782–793. [Google Scholar] [CrossRef]
- Kerkhoff, A.; Harris, R.; Petersen, C. Modifications to GPS reference station antennas to reduce multipath. In Proceedings of the ION-GNSS-2010, Institute of Navigation, Portland, OR, USA, 21–24 September 2010; pp. 866–878.
- Tatarnikov, D.; Astakhov, A.; Stepanenko, A. Broadband convex impedance ground planes for multi-system GNSS reference station antennas. GPS Solut. 2011, 15, 101–108. [Google Scholar] [CrossRef]
- Wim, A.; Carine, B.; Pascale, D.; Guy, A.E. On the influence of RF absorbing material on the GNSS position. GPS Solut. 2014. [Google Scholar] [CrossRef]
- Krantz, E.; Riley, S.; Large, P. The Design and Performance of the Zephyr Geodetic Antenna. In Proceedings of the ION-GPS-2001, Institute of Navigation, Portland, OR, USA, 11–14 September 2001; pp. 1942–1951.
- Schelkunoff, S.A. Transmission theory of plane electromagnetic waves. Proc. Inst. Radio Eng. 1937, 25, 1457–1492. [Google Scholar] [CrossRef]
- Gao, Y.; Huang, L.; Zheng, Z.; Li, H.; Zhu, M. The influence of cobalt on the corrosion resistance and electromagnetic shielding of electroless Ni-Co-P deposits on Al substrate. Appl. Surf. Sci. 2007, 253, 9470–9475. [Google Scholar] [CrossRef]
- Lu, N.; Wang, X.; Meng, L.; Ding, C. Electromagnetic interference shielding effectiveness of magnesium alloy-fly ash composites. J. Alloy. Compd. 2015, 650, 871–877. [Google Scholar] [CrossRef]
- Liu, D.L.; Liu, P.A.; Yang, Q.S. Research status and prospect of wave absorbing materials. Mater. Rev. 2013, 27, 74–78. [Google Scholar]
- Wang, C.; Guo, J.L.; Kang, F.Y. Research progress in theoretical designs of microwave absorbing materials. Mater. Rev. 2009, 23, 5–8. [Google Scholar]
- Jiao, W.H.; Ding, Q.; Li, J.W. Monitoring and assessment of GNSS Open Services. Sci. Sin. Phys. Mech. Astron. 2011, 41, 521–527. [Google Scholar] [CrossRef]
- Estey, L.; Meertens, C.M. TEQC: The multi-purpose toolkit for GPS/GLONASS Data. GPS Solut. 1999, 3, 42–49. [Google Scholar] [CrossRef]
- Andrew, S.; David, M.; Martin, H. Experimental results for the multipath performance of Galileo signals transmitted by GIOVE-A satellite. Int. J. Navig. Obs. 2008. [Google Scholar] [CrossRef]
- Saastamoinen, J. Contribution to the theory of atmospheric refraction. Bull. Géod. 1973, 107, 13–34. [Google Scholar] [CrossRef]
Frequency (Hz) | (dB) | (dB) | ||
---|---|---|---|---|
1.0 × 109 | 0.17 | 1 | 1713.6 | >120 |
1.5 × 109 | 0.17 | 1 | 2098.8 | >120 |
2.0 × 109 | 0.17 | 1 | 2423.5 | >120 |
2.5 × 109 | 0.17 | 1 | 2708.9 | >120 |
3.0 × 109 | 0.17 | 1 | 2968.1 | >120 |
Site | BDS | GPS | GLONASS | Note | |||||
---|---|---|---|---|---|---|---|---|---|
B1 | B2 | B3 | L1 | L2 | L5 | G1 | G2 | ||
SHA1 | 0.73 | 0.62 | 0.45 | 0.37 | 0.42 | 0.47 | 0.39 | 0.49 | without shield |
0.56 | 0.45 | 0.32 | 0.24 | 0.35 | 0.31 | 0.25 | 0.37 | with shield | |
23.3% | 27.4% | 28.9% | 35.1% | 16.7% | 34.0% | 35.9% | 24.5% | ratio | |
KUN1 | 0.67 | 0.57 | 0.39 | 0.26 | 0.31 | 0.35 | 0.30 | 0.40 | without shield |
0.55 | 0.47 | 0.31 | 0.21 | 0.25 | 0.29 | 0.22 | 0.30 | with shield | |
17.9% | 17.5% | 20.5% | 19.2% | 19.4% | 17.1% | 26.7% | 25.0% | ratio |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Yang, X.; Sun, B.; Su, H. Global Navigation Satellite System Multipath Mitigation Using a Wave-Absorbing Shield. Sensors 2016, 16, 1332. https://doi.org/10.3390/s16081332
Yang H, Yang X, Sun B, Su H. Global Navigation Satellite System Multipath Mitigation Using a Wave-Absorbing Shield. Sensors. 2016; 16(8):1332. https://doi.org/10.3390/s16081332
Chicago/Turabian StyleYang, Haiyan, Xuhai Yang, Baoqi Sun, and Hang Su. 2016. "Global Navigation Satellite System Multipath Mitigation Using a Wave-Absorbing Shield" Sensors 16, no. 8: 1332. https://doi.org/10.3390/s16081332
APA StyleYang, H., Yang, X., Sun, B., & Su, H. (2016). Global Navigation Satellite System Multipath Mitigation Using a Wave-Absorbing Shield. Sensors, 16(8), 1332. https://doi.org/10.3390/s16081332