Low-Cost Soil Moisture Profile Probe Using Thin-Film Capacitors and a Capacitive Touch Sensor
"> Figure 1
<p>Schematic of copper circuit printed on the film substrate.</p> "> Figure 2
<p>Developed soil moisture sensors.</p> "> Figure 3
<p>Scheme of the sensor network system with the developed soil moisture sensors.</p> "> Figure 4
<p>Details of (<b>a</b>) master node and (<b>b</b>) slave node of the sensor network system.</p> "> Figure 5
<p>Dimensions of the greenhouse and locations of the master and slave nodes.</p> "> Figure 6
<p>Relationship between volumetric water content (VWC) and electrical capacitance obtained from the calibration experiments. The different colors and numbers indicate the repeated count. The black lines are the approximate equations.</p> "> Figure 7
<p>Temperatures above the surface and at 10, 20, and 30 cm depths measured with the developed sensor A (<b>i</b>), volumetric water content (VWC) measured in ridges (<b>ii</b>), and in furrows (<b>iii</b>), and precipitation (<b>iv</b>) at the grape field from 25 October to 19 December 2015.</p> "> Figure 8
<p>Volumetric water content (VWC) measured with the developed soil moisture sensors at the mizuna green house field from 12 September to 17 October 2015. The left panel (<b>i</b>) shows VWC at locations a, c, e, and f, and the right panel (<b>ii</b>) shows VWC at locations g, h, and i.</p> "> Figure 9
<p>Distribution of the increase in soil moisture at the mizuna greenhouse after irrigation on 29 September 2015.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensor Development
2.2. Sensor Calibration
2.3. Sensor Evaluation
3. Results and Discussion
3.1. Sensor Calibration
3.2. Sensor Performance
3.3. Possible Improvements of the Developed Sensor
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fares, A.; Alva, A.K. Evaluation of capacitance probes for optimal irrigation of citrus through soil moisture monitoring in an entisol profile. Irrig. Sci. 2000, 19, 57–64. [Google Scholar] [CrossRef]
- Vellidis, G.; Tucker, M.; Perry, C.; Kvien, C.; Bednarz, C. A real-time wireless smart sensor array for scheduling irrigation. Comput. Eectron. Agric. 2008, 61, 44–50. [Google Scholar] [CrossRef]
- Kim, Y.; Evan, R.G.; Iverson, W.M. Remote sensing and control of an irrigation system using a distributed wireless sensor network. IEEE Trans. Instrum. Meas. 2008, 57, 1379–1387. [Google Scholar]
- Bouyoucus, G.J.; Mick, A.H. Improvements in the plaster of paris absorption block electrical resistance method for measuring soil moisture under field conditions. Soil Sci. 1946, 63, 455–465. [Google Scholar] [CrossRef]
- Spaans, E.J.A.; Baker, J.M. Calibration of Watermark soil moisture sensors for soil matric potential and temperature. Plant Soil 1992, 143, 213–217. [Google Scholar] [CrossRef]
- Noborio, K.; Horton, R.; Tan, C.S. Time domain reflectometry probe for simultaneous measurement of soil matric potential and water content. Soil Sci. Soc. Am. J. 1999, 63, 1500–1505. [Google Scholar] [CrossRef]
- Bouyoucus, G.J.; Mick, A.H. A fabric absorption unit for continuous measurement of soil moisture in the field. Soil Sci. 1948, 66, 217–232. [Google Scholar] [CrossRef]
- Gardner, W.; Kirkham, D. Determination of soil moisture by neutron scattering. Soil Sci. 1952, 73, 391–401. [Google Scholar] [CrossRef]
- Van Bavel, C.H.M.; Underwood, N.; Swanson, R.W. Soil moisture measurement by neutron moderation. Soil Sci. 1956, 82, 29–41. [Google Scholar] [CrossRef]
- Long, I.F.; French, B.K. Measurement of soil moisture in the field by neutron moderation. Eur. J. Soil Sci. 1967, 18, 149–166. [Google Scholar] [CrossRef]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef]
- Noborio, K. Measurement of soil water content and electrical conductivity by time domain reflectometry: A review. Comput. Electron. Agric. 2001, 31, 213–237. [Google Scholar] [CrossRef]
- Dalton, F.N.; Herkelrath, W.N.; Rawlins, D.S.; Rhoades, J.D. Time-domain reflectometry: Simultaneous measurement of soil water content and electrical conductivity with a single probe. Science 1984, 224, 989–990. [Google Scholar] [CrossRef] [PubMed]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content using TDR: II. Evaluation of installation and configuration of parallel transmission lines. Soil Sci. Soc. Am. J. 1982, 46, 678–684. [Google Scholar] [CrossRef]
- Nissen, H.H.; Moldrup, P.; Henriksen, K. High-resolution time domain reflectometry coil probe for measuring soil water content. Soil Sci. Soc. Am. J. 1998, 62, 1203–1211. [Google Scholar] [CrossRef]
- Bell, J.P.; Dean, T.J.; Hodnett, M.G. Soil moisture measurement by an improved capacitance technique, part II. Field techniques, evaluation and calibration. J. Hydrol. 1987, 93, 79–90. [Google Scholar] [CrossRef]
- Dean, T.J.; Bell, J.P.; Baty, A.J.B. Soil moisture measurement by an improved capacitance technique, part I. Sensor design and performance. J. Hydrol. 1987, 93, 67–78. [Google Scholar] [CrossRef]
- Tomer, M.D.; Anderson, J.L. Field evaluation of a soil water-capacitance probe in a field sand. Soil Sci. 1995, 159, 90–98. [Google Scholar] [CrossRef]
- Nadler, A.; Lapid, Y. An improved capacitance sensor for in situ monitoring of soil moisture. Aust. J. Soil Res. 1996, 34, 361–368. [Google Scholar] [CrossRef]
- Bogena, H.R.; Huisman, J.A.; Oberdörster, C.; Vereecken, H. Evaluation of a low-cost soil water content sensor for wireless network applications. J. Hydrol. 2007, 344, 32–42. [Google Scholar] [CrossRef]
- Seyfried, M.S.; Grant, L.E. Temperature effects on soil dielectric properties measured at 50 MHz. Vadose Zone J. 2007, 6, 759–765. [Google Scholar] [CrossRef]
- Evett, S.R.; Tolk, J.A.; Howell, T.A. Soil profile water content determination: Sensor accuracy, axial response, calibration, temperature dependence, and precision. Vadose Zone J. 2006, 5, 894–907. [Google Scholar] [CrossRef]
- Evett, S.R.; Schwartz, R.C.; Tolk, J.A.; Howell, T.A. Soil profile water content determination: Spatiotemporal variability of electromagnetic and neutron probe sensors in access tubes. Vadose Zone J. 2009, 8, 926–941. [Google Scholar] [CrossRef]
- Mazahrih, N.Th.; Katbeh-Bader, N.; Evett, S.R.; Ayars, J.E.; Trout, T.J. Field calibration accuracy and utility of four down-hole water content sensors. Vadose Zone J. 2008, 7, 992–1000. [Google Scholar] [CrossRef]
- Kelleners, T.J.; Robinson, D.A.; Shouse, P.J.; Ayars, J.E.; Skaggs, T.H. Frequency dependence of the complex permittivity and its impact on dielectric sensor calibration in soils. Soil Sci. Soc. Am. J. 2005, 69, 67–76. [Google Scholar]
- Paltineanu, I.C.; Starr, J.L. Real-time soil water dynamics using multisensory capacitance probes: Laboratory calibration. Soil Sci. Soc. Am. J. 1997, 61, 1576–1585. [Google Scholar] [CrossRef]
- Kizito, F.; Campbell, C.S.; Campbell, G.S.; Cobos, D.R.; Teare, B.L.; Carter, B.; Hopmans, J.W. Frequency electrical conductivity and temperature analysis of a low-cost capacitance soil moisture sensor. J. Hydrol. 2008, 352, 367–378. [Google Scholar] [CrossRef]
- Padilla, F.M.; Pugnaire, F.I. Rooting depth and soil moisture control Mediterranean woody seedling survival during drought. Funct. Ecol. 2007, 21, 489–495. [Google Scholar] [CrossRef]
- Bales, R.C.; Hopmans, J.W.; O’Geen, A.T.; Meadows, M.; Hartsough, P.C.; Kirchner, P.; Hunsaker, G.T.; Beaudette, D. Soil moisture response to snowmelt and rainfall in Sierra Nevada mixed-conifer forest. Vadose Zone J. 2011, 10, 786–799. [Google Scholar] [CrossRef]
- Kojima, Y.; Mitsuishi, S.; Mizoguchi, M. Effectiveness of ICT field monitoring linking field images with soil and environmental data: Case of a cold upland cabbage field. J. Jpn Soc. Soil Phys. 2015, 131, 5–13. (In Japanese) [Google Scholar]
- Shibusawa, S. Prevision farming Japan model. Agric. Inform. Res. 2003, 12, 125–133. [Google Scholar]
- Kawahara, Y.; Hodges, S.; Cook, B.S.; Zhang, C.; Abowd, G.D. Instant inkjet curcuits: Lab-based inkjet printing to support rapid prototyping of UbiComp devices. In Proceedings of the ACM Ubicomp 2013, Zurich, Switzerland, 8–12 September 2013; pp. 363–372.
- Kawahara, Y.; Lee, H.; Tentzeris, M.M. SenSprout: Inkjet-printed soil moisture and leaf wetness sensor. In Proceedings of the ACM Ubicomp 2012, Pittsburgh, PA, USA, 5–8 September 2012; pp. 545–545.
- Shirahama, Y.; Shigeta, R.; Kojima, Y.; Nishioka, K.; Kawahara, Y.; Asami, T. Implementation of wide range soil moisture profile probe by coplanar plate capacitor on film substrate. In Proceedings of the 2015 IEEE Sensors, Busan, Korea, 1–4 November 2015; pp. 1758–1761.
- NXP Semiconductors. MPR121, Proximity Capacitive Touch Sensor Controller-Data Sheet. NXP Semiconductors: Eindhoven, The Netherlands, 2013. Available online: https://www.nxp.com/files/sensors/doc/data_sheet/MPR084.pdf (accessed on 10 August 2016).
- Delin, K.A.; Jackson, S.P.; Johnson, D.W.; Burleigh, S.C.; Woodrow, R.R.; McAuley, J.M.; Dohm, J.M.; Ip, F.; Ferreé, T.P.A.; Rucker, D.F.; et al. Environmental studies with the sensor web: Principles and Practice. Sensors 2005, 5, 103–117. [Google Scholar] [CrossRef]
- Pierce, F.J.; Elliott, T.V. Regional and on-farm wireless sensor network for agricultural systems in Eastern Washington. Comput. Electron. Agric. 2008, 61, 32–43. [Google Scholar] [CrossRef]
- Cobos, D. Measurement Volume of Decagon Volumetric Water Content Sensors. Decagon Devices, Inc.: Pullman, WA, USA, 2015. Available online: http://manuals.decagon.com/Application%20Notes/14955VWC%20Sensor%20Measurement%20Volumes_Web.pdf (accessed on 10 August 2016).
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kojima, Y.; Shigeta, R.; Miyamoto, N.; Shirahama, Y.; Nishioka, K.; Mizoguchi, M.; Kawahara, Y. Low-Cost Soil Moisture Profile Probe Using Thin-Film Capacitors and a Capacitive Touch Sensor. Sensors 2016, 16, 1292. https://doi.org/10.3390/s16081292
Kojima Y, Shigeta R, Miyamoto N, Shirahama Y, Nishioka K, Mizoguchi M, Kawahara Y. Low-Cost Soil Moisture Profile Probe Using Thin-Film Capacitors and a Capacitive Touch Sensor. Sensors. 2016; 16(8):1292. https://doi.org/10.3390/s16081292
Chicago/Turabian StyleKojima, Yuki, Ryo Shigeta, Naoya Miyamoto, Yasutomo Shirahama, Kazuhiro Nishioka, Masaru Mizoguchi, and Yoshihiro Kawahara. 2016. "Low-Cost Soil Moisture Profile Probe Using Thin-Film Capacitors and a Capacitive Touch Sensor" Sensors 16, no. 8: 1292. https://doi.org/10.3390/s16081292
APA StyleKojima, Y., Shigeta, R., Miyamoto, N., Shirahama, Y., Nishioka, K., Mizoguchi, M., & Kawahara, Y. (2016). Low-Cost Soil Moisture Profile Probe Using Thin-Film Capacitors and a Capacitive Touch Sensor. Sensors, 16(8), 1292. https://doi.org/10.3390/s16081292