Genetic Particle Swarm Optimization–Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection
<p>Illustration of one particle update for GPSO (Genetic Particle Swarm Optimization)-based feature selection.</p> "> Figure 2
<p>Flowchart of GPSO-based feature selection algorithm.</p> "> Figure 3
<p>True color synthesis of images of study area nearby the Modern Agricultural Demonstrative Garden of Beijing (China) acquired by Worldview-2/3 VHR multispectral sensor on: (<b>a</b>) 27 September 2010; and (<b>b</b>) 20 October 2014.</p> "> Figure 4
<p>Comparison analysis of fitness convergence with GPSO, CS and BSO in Case A.</p> "> Figure 5
<p>Change detection results based on OB-HMAD(Objected Based-Hybrid Multivariate Alternative Detection) with different feature selection algorithms in Case A: (<b>a</b>) Worldview-2 VHR(Very High Resolution) remotely sensed image from 2010; (<b>b</b>) Worldview-3 VHR remotely sensed image from 2014; (<b>c</b>) the reference map obtained by ground truth data; (<b>d</b>) OBCD(Objected Based Change Detection) result with a single spectral feature (average of bands); (<b>e</b>) OBCD result with multiple features selected by BSO(Backtracking Search Optimization ); (<b>f</b>) OBCD result with multiple features selected by CS(Cuckoo Search); and (<b>g</b>) OBCD result with multiple features selected by GPSO.</p> "> Figure 6
<p>True color composition of images of study area nearby the Olympic Park of Beijing (China) acquired by Worldview-2 VHR fusion image on: (<b>a</b>) 12 September 2012; and (<b>b</b>) 20 September 2013.</p> "> Figure 7
<p>Comparison analysis of fitness convergence with BSO, CS and GPSO in Case B.</p> "> Figure 8
<p>Change detection results based on OB-HMAD with different feature selection algorithms in Case B: (<b>a</b>) Worldview-2 VHR remotely sensed image from 2012; (<b>b</b>) Worldview-2 VHR remotely sensed image from 2013; (<b>c</b>) the reference map obtained by ground truth data; (<b>d</b>) OBCD result with a single spectral feature (average of bands); (<b>e</b>) OBCD result with multiple features selected by BSO; (<b>f</b>) OBCD result with multiple features selected by CS; and (<b>g</b>) OBCD result with multiple features selected by GPSO.</p> "> Figure 9
<p>Impact of the number of features on precision and running time of OBCD with different feature selection algorithms: (<b>a</b>) BSO algorithm; (<b>b</b>) CS algorithm; and (<b>c</b>) GPSO algorithm.</p> "> Figure 10
<p>Fitness convergence curves of GPSO-RMV based on different scales of particle swarm.</p> "> Figure 11
<p>Comparison of fitness convergence with different fitness functions: (<b>a</b>) RMV (Ratio of Mean to Variance); (<b>b</b>) NNC (Nearest Neighbor Cassifier); and (<b>c</b>) JMD (Jeffreys–Matusita Distance).</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Genetic Particle Swarm Optimization
2.2. Ratio of Mean to Variance Fitness Function
2.3. GPSO-Based Feature Selection for Object-Based Change Detection
- Step 1: Normalize and set the parameters, including the size of the particle swarm N, the learning factors c1 and c2, the inertia weight factor ω and the maximum number of iterations itermax;
- Step 2: Assume that M features are about to be selected from the feature set, and randomly initialize N particles xi, and each particle includes M indices of the features to be selected;
- Step 3: Evaluate the fitness of each particle by Equation (12), and determine pbesti and gbesti;
- Step 4: Update the position and velocity vectors of each particle using Equations (1)–(6);
- Step 5: If the algorithm is converged, then stop; otherwise, go to Step 3 and continue;
- Step 6: The particle yielding the global optimum solution gbesti is the final solution and includes the selected feature subset.
3. Results
3.1. Case A: Feature Selection for Multiple Features OBCD in Farmland Area
3.1.1. Materials and Study Area
3.1.2. Image Object Feature Extraction
3.1.3. Convergence Analysis of GPSO
3.1.4. Accuracy Evaluation of Change Detection Based on OB-HMAD
3.2. Case B: Feature Selection for Multiple Features OBCD in Urban Area
3.2.1. Materials and Study Area
3.2.2. Image Object Feature Extraction
3.2.3. Convergence Analysis of GPSO
3.2.4. Accuracy Evaluation of Change Detection Based on OB-HMAD
4. Discussion
4.1. Number of Features to Be Selected
4.2. Size of the Particle Swarm
4.3. Comparison of Different Fitness Functions
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Queiroz Feitosa, R.; van der Meer, F.; van der Werff, H.; van Coillie, F.; et al. Geographic object-based image analysis-towards a new paradigm. ISPRS J. Photogramm. 2014, 87, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Doxani, G.; Karantzalos, K.; Strati, M.T. Monitoring urban changes based on scale-space filtering and object-oriented classification. Int. J. Appl. Earth Obs. Geoinf. 2012, 15, 38–48. [Google Scholar] [CrossRef]
- Tokarczyk, P.; Wegner, J.D.; Walk, S.; Schindler, K. Features, color spaces, and boosting: New insights on semantic classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 280–295. [Google Scholar] [CrossRef]
- Chuang, L.Y.; Tsai, S.W.; Yang, C.H. Improved binary particle swarm optimization using catfish effect for feature selection. Expert Syst. Appl. 2011, 38, 12699–12707. [Google Scholar] [CrossRef]
- Muni, D.P.; Pal, N.R.; Das, J. Genetic programming for simultaneous feature selection and classifier design. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2006, 36, 106–117. [Google Scholar] [CrossRef]
- Morchid, M.; Dufour, R.; Bousquet, P.-M.; Linarès, G.; Torres-Moreno, J.-M. Feature selection using principal component analysis for massive retweet detection. Pattern Recognit. Lett. 2014, 49, 33–39. [Google Scholar] [CrossRef]
- Whitney, A.W. A direct method of nonparametric measurement selection. IEEE Trans. Comput. 1971, 20, 1100–1103. [Google Scholar] [CrossRef]
- Ververidis, D.; Kotropoulos, C. Fast and accurate sequential floating forward feature selection with the bayes classifier applied to speech emotion recognition. Signal Process. 2008, 88, 2956–2970. [Google Scholar] [CrossRef]
- Civicioglu, P. Backtracking search optimization algorithm for numerical optimization problems. Appl. Math. Comput. 2013, 219, 8121–8144. [Google Scholar] [CrossRef]
- Brusco, M.J. A comparison of simulated annealing algorithms for variable selection in principal component analysis and discriminant analysis. Comput. Stat. Data Anal. 2014, 77, 38–53. [Google Scholar] [CrossRef]
- Anusha, M.; Sathiaseelan, J. Feature selection using k-means genetic algorithm for multi-objective optimization. Proced. Comput. Sci. 2015, 57, 1074–1080. [Google Scholar] [CrossRef]
- Zhu, Z.; Ong, Y.S.; Dash, M. Wrapper-filter feature selection algorithm using a memetic framework. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2007, 37, 70–76. [Google Scholar] [CrossRef]
- Neri, F.; Tirronen, V. Recent advances in differential evolution: A survey and experimental analysis. Artif. Intell. Rev. 2010, 33, 61–106. [Google Scholar] [CrossRef]
- Civicioglu, P.; Besdok, E. A conceptual comparison of the cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artif. Intell. Rev. 2011, 39, 315–346. [Google Scholar] [CrossRef]
- Yang, X.; Deb, S. Cuckoo search via levy flights. In Proceedings of the 2009 NaBIC World Congress on Nature & Biologically Inspired Computing, Coimbatore, India, 9–11 December 2009; pp. 210–214.
- Chen, Y.; Miao, D.; Wang, R. A rough set approach to feature selection based on ant colony optimization. Pattern Recognit. Lett. 2010, 31, 226–233. [Google Scholar] [CrossRef]
- Eberhart, R.C.; Shi, Y. Particle swarm optimization: Developments, applications and resources. In Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, Korea, 27–30 May 2001; pp. 81–86.
- Moradi, P.; Gholampour, M. A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy. Appl. Soft Comput. 2016, 43, 117–130. [Google Scholar] [CrossRef]
- Nazir, M.; Majid-Mirza, A.; Ali-Khan, S. Pso-ga based optimized feature selection using facial and clothing information for gender classification. J. Appl. Res. Technol. 2014, 12, 145–152. [Google Scholar] [CrossRef]
- Inbarani, H.H.; Azar, A.T.; Jothi, G. Supervised hybrid feature selection based on pso and rough sets for medical diagnosis. Comput. Meth. Prog. Bio. 2014, 113, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhang, S.; Deng, K.; Du, P. Research into a feature selection method for hyperspectral imagery using pso and svm. J. China Univer. Min. Technol. 2007, 17, 473–478. [Google Scholar] [CrossRef]
- Chuang, L.Y.; Chang, H.W.; Tu, C.J.; Yang, C.H. Improved binary pso for feature selection using gene expression data. Comput. Biol. Chem. 2008, 32, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Mekhmoukh, A.; Mokrani, K. Improved fuzzy c-means based particle swarm optimization initialization and outlier rejection with level set methods for mr brain image segmentation. Comput. Meth. Prog. Bio. 2015, 122, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, R.K.; Bawane, N.G. Multiobjective PSO based adaption of neural network topology for pixel classification in satellite imagery. Appl. Soft Comput. 2015, 28, 217–225. [Google Scholar] [CrossRef]
- Xue, B.; Zhang, M.; Browne, W.N. Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms. Appl. Soft Comput. 2014, 18, 261–276. [Google Scholar] [CrossRef]
- Yang, H.; Du, Q.; Chen, G. Particle swarm optimization-based hyperspectral dimensionality reduction for urban land cover classification. IEEE J. Sel. Top. Appl. Earth 2012, 5, 544–554. [Google Scholar] [CrossRef]
- Wang, X.; Yang, J.; Teng, X.; Xia, W.; Jensen, R. Feature selection based on rough sets and particle swarm optimization. Pattern Recognit. Lett. 2007, 28, 459–471. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, G.; Chen, H.; Dong, H.; Zhu, X.; Wang, S. An improved particle swarm optimization for feature selection. J. Bionic Eng. 2011, 8, 3396–3400. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Bourennane, S.; Fossati, C.; Cailly, A. Improvement of classification for hyperspectral images based on tensor modeling. IEEE Geosci. Remote Sens. Lett. 2010, 7, 801–805. [Google Scholar] [CrossRef]
- Kantardzic, M. Data Mining: Concepts, Models, Methods, and Algorithms, 2nd ed.; John Wiley and Sons: New York, NY, USA, 2011. [Google Scholar]
- Li, D.; Ke, Y.; Gong, H.; Li, X. Object-based urban tree species classification using bi-temporal worldview-2 and worldview-3 images. Remote Sens. 2015, 7, 15861–16937. [Google Scholar] [CrossRef]
- Coppin, P.R.; Bauer, M.E. Digital change detection in forest ecosystems with remote sensing imagery. Remote Sens. Rev. 1996, 13, 207–234. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, T.; Shi, P.; Wang, J. Classification of remote sensing image based on object oriented and class rules. Geomat. Inform. Sci. Wuhan Univer. 2006, 31, 316–320. [Google Scholar]
- Rahman, M.R.; Saha, S.K. Multi-resolution segmentation for object-based classification and accuracy assessment of land use/land cover classification using remotely sensed data. J. Indian Soc. Remote 2008, 36, 189–201. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. Part B Cybern. 1973, 610–621. [Google Scholar] [CrossRef]
- Kohli, D.; Warwadekar, P.; Kerle, N.; Sliuzas, R.; Stein, A. Transferability of object-oriented image analysis methods for slum identification. Remote Sens. 2013, 5, 4209–4228. [Google Scholar] [CrossRef]
- Nebiker, S.; Lack, N.; Deuber, M. Building change detection from historical aerial photographs using dense image matching and object-based image analysis. Remote Sens. 2014, 6, 8310–8336. [Google Scholar] [CrossRef]
- Nielsen, A.A.; Conradsen, K.; Simpson, J.J. Multivariate alteration detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: New approaches to change detection studies. Remote Sens. Environ. 1998, 64, 1–19. [Google Scholar] [CrossRef]
- Pierce, K. Accuracy optimization for high resolution object-based change detection: An example mapping regional urbanization with 1-m aerial imagery. Remote Sens. 2015, 7, 12654–12679. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, Y.; Jiang, W. The change detection of high spatial resolution remotely sensed imagery based on ob-hmad algorithm and spectral features. Spectrosc. Spect. Anal. 2015, 35, 1709–1714. [Google Scholar]
- Trelea, I.C. The particle swarm optimization algorithm: Convergence analysis and parameter selection. Inform. Process. Lett. 2003, 85, 317–325. [Google Scholar] [CrossRef]
- Eismann, M.T. Hyperspectral Remote Sensing; SPIE Press: Bellingham, WA, USA, 2012. [Google Scholar]
Case | Spectral | Geometric | Texture (GLCM-Based) |
---|---|---|---|
Case A | Mean | Shape Index | GLCM-Correlation |
NDVI | Density | GLCM-Contrast | |
GLCM-Entropy | |||
GLCM-Mean |
Case | Feature Selection Algorithms | BSO | CS | GPSO |
---|---|---|---|---|
Case A | Iterationcon | 29 | 46 | 40 |
Final fitnessavg | −296 | −335 | −345 | |
Dcon | 64 | 27 | 17 |
Case | Algorithms | Selected Features |
---|---|---|
Case A | BSO | Mean, NDVI, GLCM-Correlation (0°, 90°), GLCM-Contrast (0°), GLCM-Mean (0°) |
CS | Mean, NDVI, GLCM-Correlation (0°), GLCM-Contrast (0°, 90°),GLCM-Entropy (0°) | |
GPSO | Mean, NDVI, GLCM-Correlation (0°), GLCM-Contrast (0°, 90°), GLCM-Entropy (0°) |
Case | Methods | FNR (%) | FPR (%) | OA (%) | Kappa |
---|---|---|---|---|---|
Case A | Single-Feature | 69.56 | 32.43 | 53.33 | 0.0648 |
BSO | 54.35 | 14.87 | 70.06 | 0.3267 | |
CS | 6.52 | 36.49 | 75.00 | 0.5187 | |
GPSO | 10.87 | 18.92 | 84.17 | 0.6771 |
Case | Feature Selection Algorithms | BSO | CS | GPSO |
---|---|---|---|---|
Case B | Iterationcon | 35 | 55 | 44 |
Final fitnessavg | −327 | −369 | −388 | |
Dcon | 88 | 46 | 27 |
Case | Algorithms | Selected Features |
---|---|---|
Case B | BSO | Mean, NDVI, GLCM-Correlation (90°), GLCM-Contrast (0°, 90°), GLCM-2nd Angust moment (0°), GLCM-Homogeneity (0°) |
CS | Mean, GLCM-Correlation (0°, 90°), GLCM-Contrast (0°, 90°), GLCM-2nd Angust momen t (0°, 45°) | |
GPSO | Mean, GLCM-Correlation (0°, 90°), GLCM-Contrast (0°), GLCM-2nd Angust moment (0°, 45°), GLCM-Homogeneity (0°) |
Case | Methods | FNR (%) | FPR (%) | OA (%) | Kappa |
---|---|---|---|---|---|
Case B | Single-Feature | 32.35 | 57.45 | 49.22 | 0.0726 |
BSO | 16.47 | 27.23 | 72.63 | 0.4517 | |
CS | 11.76 | 22.47 | 79.91 | 0.5712 | |
GPSO | 8.82 | 19.16 | 83.59 | 0.6314 |
Algorithms | Maximum | Mean | Standard Deviation | Average Change Rate |
---|---|---|---|---|
BSO | 81.7% | 67.0% | 10.7% | 8.1% |
CS | 83.1% | 69.4% | 10.2% | 7.8% |
GPSO | 86.9% | 73.1% | 9.1% | 5.3% |
Algorithm | Iterationcon | Final Fitnessavg | Running Time (s) |
---|---|---|---|
20GPSO | 25 | −314 | 30 |
40GPSO | 36 | −330 | 45 |
60GPSO | 40 | −345 | 70 |
80GPSO | 44 | −340 | 125 |
100GPSO | 44 | −332 | 150 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Chen, Y.; Jiang, W. Genetic Particle Swarm Optimization–Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection. Sensors 2016, 16, 1204. https://doi.org/10.3390/s16081204
Chen Q, Chen Y, Jiang W. Genetic Particle Swarm Optimization–Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection. Sensors. 2016; 16(8):1204. https://doi.org/10.3390/s16081204
Chicago/Turabian StyleChen, Qiang, Yunhao Chen, and Weiguo Jiang. 2016. "Genetic Particle Swarm Optimization–Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection" Sensors 16, no. 8: 1204. https://doi.org/10.3390/s16081204
APA StyleChen, Q., Chen, Y., & Jiang, W. (2016). Genetic Particle Swarm Optimization–Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection. Sensors, 16(8), 1204. https://doi.org/10.3390/s16081204