Design of Helical Capacitance Sensor for Holdup Measurement in Two-Phase Stratified Flow: A Sinusoidal Function Approach
"> Figure 1
<p>The structure of 360° twisted helical capacitance sensor design in 2D and 3D views.</p> "> Figure 2
<p>2D view of different holdup values for air-water smooth stratified flow.</p> "> Figure 3
<p>Equivalent circuit representation of helical capacitance sensor.</p> "> Figure 4
<p><math display="inline"> <semantics> <mrow> <msub> <mi>C</mi> <mrow> <mi>N</mi> <mo>,</mo> <mtext> </mtext> <mi>f</mi> <mi>e</mi> <mi>m</mi> </mrow> </msub> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <msub> <mi>C</mi> <mrow> <mi>N</mi> <mo>,</mo> <mtext> </mtext> <mi>a</mi> <mi>p</mi> <mi>p</mi> <mi>r</mi> <mi>o</mi> <mi>x</mi> </mrow> </msub> </mrow> </semantics> </math> versus <math display="inline"> <semantics> <mrow> <msub> <mi>H</mi> <mrow> <mi>w</mi> <mi>a</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> </mrow> </semantics> </math> .</p> "> Figure 5
<p>The effect on <math display="inline"> <semantics> <mrow> <msub> <mi>C</mi> <mrow> <mi>N</mi> <mo>,</mo> <mo> </mo> <mi>f</mi> <mi>e</mi> <mi>m</mi> </mrow> </msub> </mrow> </semantics> </math> due to variation of <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="sans-serif">ε</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>q</mi> <mi>u</mi> <mi>i</mi> <mi>d</mi> </mrow> </msub> </mrow> </semantics> </math> .</p> "> Figure 6
<p>The effect on <math display="inline"> <semantics> <mrow> <msub> <mi>C</mi> <mrow> <mi>N</mi> <mo>,</mo> <mo> </mo> <mi>f</mi> <mi>e</mi> <mi>m</mi> </mrow> </msub> </mrow> </semantics> </math> due to variations of: (<b>a</b>) <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="sans-serif">ε</mi> <mrow> <mi>w</mi> <mi>a</mi> <mi>l</mi> <mi>l</mi> </mrow> </msub> </mrow> </semantics> </math>; (<b>b</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mn>2</mn> </msub> <mo>−</mo> <msub> <mi>R</mi> <mn>1</mn> </msub> </mrow> </semantics> </math> .</p> "> Figure 7
<p>The effect on <math display="inline"> <semantics> <mrow> <msub> <mi>C</mi> <mrow> <mi>N</mi> <mo>,</mo> <mo> </mo> <mi>f</mi> <mi>e</mi> <mi>m</mi> </mrow> </msub> </mrow> </semantics> </math> due to variation of <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mn>1</mn> </msub> </mrow> </semantics> </math> .</p> "> Figure 8
<p>The effect on <math display="inline"> <semantics> <mrow> <msub> <mi>C</mi> <mrow> <mi>N</mi> <mo>,</mo> <mo> </mo> <mi>f</mi> <mi>e</mi> <mi>m</mi> </mrow> </msub> </mrow> </semantics> </math> due to variations of: (<b>a</b>) <math display="inline"> <semantics> <mi mathvariant="sans-serif">θ</mi> </semantics> </math>; (<b>b</b>) <math display="inline"> <semantics> <mi>P</mi> </semantics> </math> .</p> "> Figure 9
<p>Schematic diagram of the capacitance interface circuit.</p> "> Figure 10
<p>Helical capacitance sensor for: (<b>a</b>) Air-water; (<b>b</b>) Oil-water. Pitch size is shown for each design.</p> "> Figure 11
<p>Schematic illustration of experimental setup for two-phase flow.</p> "> Figure 12
<p><math display="inline"> <semantics> <mrow> <msub> <mi>C</mi> <mrow> <mi>N</mi> <mo>,</mo> <mtext> </mtext> <mi>f</mi> <mi>e</mi> <mi>m</mi> </mrow> </msub> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <msub> <mi>C</mi> <mrow> <mi>N</mi> <mo>,</mo> <mtext> </mtext> <mi>a</mi> <mi>p</mi> <mi>p</mi> <mi>r</mi> <mi>o</mi> <mi>x</mi> </mrow> </msub> </mrow> </semantics> </math>, and <math display="inline"> <semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>N</mi> <mo>,</mo> <mtext> </mtext> <mi>m</mi> <mi>e</mi> <mi>a</mi> <mi>s</mi> </mrow> </msub> </mrow> </semantics> </math> versus <math display="inline"> <semantics> <mrow> <msub> <mi>H</mi> <mrow> <mi>w</mi> <mi>a</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> </mrow> </semantics> </math> for air-water stratified flow.</p> "> Figure 13
<p><math display="inline"> <semantics> <mrow> <msub> <mi>C</mi> <mrow> <mi>N</mi> <mo>,</mo> <mtext> </mtext> <mi>f</mi> <mi>e</mi> <mi>m</mi> </mrow> </msub> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <msub> <mi>C</mi> <mrow> <mi>N</mi> <mo>,</mo> <mtext> </mtext> <mi>a</mi> <mi>p</mi> <mi>p</mi> <mi>r</mi> <mi>o</mi> <mi>x</mi> </mrow> </msub> </mrow> </semantics> </math>, and <math display="inline"> <semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>N</mi> <mo>,</mo> <mtext> </mtext> <mi>m</mi> <mi>e</mi> <mi>a</mi> <mi>s</mi> </mrow> </msub> </mrow> </semantics> </math> versus <math display="inline"> <semantics> <mrow> <msub> <mi>H</mi> <mrow> <mi>w</mi> <mi>a</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> </mrow> </semantics> </math> for oil-water stratified flow.</p> ">
Abstract
:1. Introduction
2. Helical Capacitance Sensor
2.1. Conventional Design
2.2. Finite Element Model
2.3. Approximation Model
3. Finite Element Analysis on Design Parameters
3.1. Relative Permittivity of Two-Phase Components
3.2. Geometry of Pipe
3.3. Design Parameters of the Sensor
4. Experimental Setup
4.1. Capacitance Interface Circuit
4.2. Fabrication of Capacitance Sensors
4.3. Static Two-Phase Stratified Flow Setup
5. Results and Discussion
5.1. Air-Water Stratified Flow
5.2. Oil-Water Stratified Flow
6. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Speight, J.G. Chapter 7—Transportation. In Subsea and Deepwater Oil and Gas Science and Technology; Gulf Professional Publishing: Boston, MA, USA, 2015; pp. 191–212. [Google Scholar]
- Thome, J.R. Chapter 12: Two-phase flow patterns. In Engineering Data Book III; Wolverine Tube Inc.: Decatur, AL, USA, 2004; pp. 1–34. [Google Scholar]
- Powell, R.L. Experimental techniques for multiphase flows. Phys. Fluids 2008, 20. [Google Scholar] [CrossRef]
- Boyer, C.; Duquenne, A.-M.; Wild, G. Measuring techniques in gas-liquid and gas-liquid-solid reactors. Chem. Eng. Sci. 2002, 57, 3185–3215. [Google Scholar] [CrossRef]
- Strazza, D.; Demori, M.; Ferrari, V.; Poesio, P. Capacitance sensor for hold-up measurement in high-viscous-oil/conductive-water core-annular flows. Flow Meas. Instrum. 2011, 22, 360–369. [Google Scholar] [CrossRef]
- Aslam, M.Z.; Tang, T.B. A high resolution capacitive sensing system for the measurement of water content in crude oil. Sensors 2014, 14, 11351–11361. [Google Scholar]
- Ye, J.; Peng, L.; Wang, W.; Zhou, W. Helical capacitance sensor-based gas fraction measurement of gas-liquid two-phase flow in vertical tube with small diameter. IEEE Sens. J. 2011, 11, 1704–1710. [Google Scholar] [CrossRef]
- Ye, J.; Peng, L.; Wang, W.; Zhou, W. Optimization of helical capacitance sensor for void fraction measurement of gas-liquid two-phase flow in a small diameter tube. IEEE Sens. J. 2011, 11, 2189–2196. [Google Scholar] [CrossRef]
- Demori, M.; Ferrari, V.; Strazza, D.; Poesio, P. A capacitive sensor system for the analysis of two-phase flows of oil and conductive water. Sens. Actuators A Phys. 2010, 163, 172–179. [Google Scholar] [CrossRef]
- Canière, H.; T’Joen, C.; Willockx, A.; de Paepe, M. Capacitance signal analysis of horizontal two-phase flow in a small diameter tube. Exp. Therm. Fluid Sci. 2008, 32, 892–904. [Google Scholar] [CrossRef]
- Canière, H.; Bauwens, B.; T’Joen, C.; de Paepe, M. Mapping of horizontal refrigerant two-phase flow patterns based on clustering of capacitive sensor signals. Int. J. Heat Mass Transf. 2010, 53, 5298–5307. [Google Scholar] [CrossRef]
- Ji, H.; Li, H.; Huang, Z.; Wang, B.; Li, H. Measurement of gas-liquid two-phase flow in micro-pipes by a capacitance sensor. Sensors 2014, 14, 22431–22446. [Google Scholar] [CrossRef] [PubMed]
- Nyce, D.S. Linear Position Sensors: Theory and Application; John Wiley & Sons: New York, NY, USA, 2004. [Google Scholar]
- Fraden, J. Handbook of Modern Sensors: Physics, Designs, and Applications; Springer: New York, NY, USA, 2010. [Google Scholar]
- Marashdeh, Q.; Teixeira, F.L.; Fan, L.S. 1—Electrical capacitance tomography. In Industrial Tomography; Wang, M., Ed.; Woodhead Publishing: Cambridge, UK, 2015; pp. 3–21. [Google Scholar]
- Elkow, K.J.; Rezkallah, K.S. Void fraction measurements in gas-liquid flows using capacitance sensors. Meas. Sci. Technol. 1996, 7, 1153. [Google Scholar] [CrossRef]
- Lowe, D.; Rezkallah, K.S. A capacitance sensor for the characterization of microgravity two-phase liquid-gas flows. Meas. Sci. Technol. 1999, 10, 965. [Google Scholar] [CrossRef]
- Jaworek, A.; Krupa, A.; Trela, M. Capacitance sensor for void fraction measurement in water/steam flows. Flow Meas. Instrum. 2004, 15, 317–324. [Google Scholar] [CrossRef]
- Jaworek, A.; Krupa, A. Phase-shift detection for capacitance sensor measuring void fraction in two-phase flow. Sens. Actuators A Phys. 2010, 160, 78–86. [Google Scholar] [CrossRef]
- Xie, C.; Stott, A.; Plaskowski, A.; Beck, M. Design of capacitance electrodes for concentration measurement of two-phase flow. Meas. Sci. Technol. 1990, 1, 65–79. [Google Scholar] [CrossRef]
- Zhao, A.; Jin, N.; Zhai, L.; Gao, Z. Liquid holdup measurement in horizontal oil-water two-phase flow by using concave capacitance sensor. Measurement 2014, 49, 153–163. [Google Scholar]
- Hammer, E.; Tollefsen, J.; Olsvik, K. Capacitance transducers for non-intrusive measurement of water in crude oil. Flow Meas. Instrum. 1989, 1, 51–58. [Google Scholar] [CrossRef]
- Tollefsen, J.; Hammer, E.A. Capacitance sensor design for reducing errors in phase concentration measurements. Flow Meas. Instrum. 1998, 9, 25–32. [Google Scholar] [CrossRef]
- Geraets, J.; Borst, J. A capacitance sensor for two-phase void fraction measurement and flow pattern identification. Int. J. Multiph. Flow 1988, 14, 305–320. [Google Scholar] [CrossRef]
- Ahmed, W.H. Capacitance sensors for void-fraction measurements and flow-pattern identification in air-oil two-phase flow. IEEE Sens. J. 2006, 6, 1153–1163. [Google Scholar] [CrossRef]
- Ahmed, W.H.; Ismail, B.I. Innovative techniques for two-phase flow measurements. Recent Pat. Electr. Electron. Eng. (Former. Recent Pat. Electr. Eng.) 2008, 1, 1–13. [Google Scholar]
- Canière, H.; Joen, C.T.; Willockx, A.; Paepe, M.D.; Christians, M.; Rooyen, E.V.; Liebenberg, L.; Meyer, J.P. Horizontal two-phase flow characterization for small diameter tubes with a capacitance sensor. Meas. Sci. Technol. 2007, 18, 2898–2906. [Google Scholar] [CrossRef]
- De Kerpel, K.; Ameel, B.; T’Joen, C.; Canière, H.; de Paepe, M. Flow regime based calibration of a capacitive void fraction sensor for small diameter tubes. Int. J. Refrig. 2013, 36, 390–401. [Google Scholar] [CrossRef]
- Dos Reis, E.; da Silva Cunha, D. Experimental study on different configurations of capacitive sensors for measuring the volumetric concentration in two-phase flows. Flow Meas. Instrum. 2014, 37, 127–134. [Google Scholar] [CrossRef]
- Zhai, L.; Jin, N.; Gao, Z.; Wang, Z. Liquid holdup measurement with double helix capacitance sensor in horizontal oil-water two-phase flow pipes. Chin. J. Chem. Eng. 2015, 23, 268–275. [Google Scholar] [CrossRef]
- Jaworek, A.; Krupa, A. Gas/liquid ratio measurements by rf resonance capacitance sensor. Sens. Actuators A Phys. 2004, 113, 133–139. [Google Scholar] [CrossRef]
- Lusheng, Z.; Ningde, J.; Zhongke, G.; HUANG, X. The finite element analysis for parallel-wire capacitance probe in small diameter two-phase flow pipe. Chin. J. Chem. Eng. 2013, 21, 813–819. [Google Scholar]
- Huang, S.; Green, R.G.; Plaskowski, A.; Beck, M.S. A high frequency stray-immune capacitance transducer based on the charge transfer principle. IEEE Trans. Instrum. Meas. 1988, 37, 368–373. [Google Scholar] [CrossRef]
- Yang, W.Q.; York, T.A. New ac-based capacitance tomography system. IEEE Proc. Sci. Meas. Technol. 1999, 146, 47–53. [Google Scholar] [CrossRef]
- Ducu, D. Op Amp Rectifiers, Peak Detectors and Clamps; Technical Report DS01353A; Microchip Technology Inc.: Chandler, AZ, USA, 2011. [Google Scholar]
- Marshall, S.J.; Bayne, S.C.; Baier, R.; Tomsia, A.P.; Marshall, G.W. A review of adhesion science. Dent. Mater. 2010, 26, e11–e16. [Google Scholar] [CrossRef] [PubMed]
- Al-Wahaibi, T.; Angeli, P. Experimental study on interfacial waves in stratified horizontal oil-water flow. Int. J. Multiph. Flow 2011, 37, 930–940. [Google Scholar] [CrossRef]
Authors | Electrode Design | Guard Electrodes | Inner Diameter of Pipe | Two-Phase Components |
---|---|---|---|---|
Geraest and Borst [24] | Helical | Yes | 5 mm and 50 mm | Air-water |
Tollefsen and Hammer [23] | Concave and helical | No | 82 mm | Gas-oil, gas-water |
Ahmed [25], Ahmed and Ismail [26] | Concave and ring | No | 12.7 mm | Air-oil |
Caniere et al. [27] | Concave | Yes | 9 mm | Air-water |
Demori et al. [9] and Strazza et al. [5] | Concave | Yes | 21 mm | Oil-water |
De Kerpel et al. [28] | Concave | Yes | 8 mm | Vapour-liquid |
dos Reis and da Silva Cunha [29] | Concave, helical, and ring | No | 33.85 mm | Air-water |
An et al. [21] | Concave | Yes | 10 mm | Oil-water |
Zhai et al. [30] | Helical | Yes | 20 mm | Oil-water |
This paper | Helical | No | 28.38 mm | Air-water, oil-water |
Parameters | Values |
---|---|
14.19 mm | |
16.85 mm | |
55 mm | |
110 mm | |
140° | |
3.2 | |
1 | |
80 |
Water Holdup | Maximum Absolute Difference (%) |
---|---|
3.9 | |
1.2 | |
4.2 |
(pF) | (pF) | ||
---|---|---|---|
1.0 | 5 | 5.987 | 10.521 |
1.0 | 10 | 5.987 | 13.945 |
1.0 | 20 | 5.987 | 17.516 |
1.0 | 40 | 5.987 | 20.606 |
1.0 | 80 | 5.987 | 22.476 |
(mm) | (pF) | (pF) | Measurement Span (pF) |
---|---|---|---|
0.86 | 3.960 | 47.714 | 43.754 |
1.46 | 4.751 | 34.322 | 29.571 |
2.06 | 5.495 | 26.866 | 21.371 |
2.66 | 5.987 | 22.476 | 16.489 |
3.26 | 6.553 | 19.800 | 13.247 |
(mm) | Absolute Difference (%) | |||
---|---|---|---|---|
10.19 | 0.06669 | 0.06058 | 0.611 | 0.06364 |
12.19 | 0.06726 | 0.07125 | 0.399 | 0.06926 |
14.19 | 0.07441 | 0.06843 | 0.598 | 0.07142 |
16.19 | 0.07510 | 0.07958 | 0.448 | 0.07734 |
18.19 | 0.07847 | 0.08583 | 0.736 | 0.08215 |
(°) | Absolute Difference (%) | Measurement Span (pF) | ||
---|---|---|---|---|
50 | 0.07657 | 0.07174 | 0.482 | 7.587 |
60 | 0.07266 | 0.07952 | 0.686 | 8.687 |
70 | 0.06967 | 0.08064 | 1.098 | 9.965 |
80 | 0.06306 | 0.08420 | 2.115 | 11.102 |
90 | 0.06644 | 0.07787 | 1.143 | 12.179 |
100 | 0.06646 | 0.08246 | 1.600 | 13.199 |
110 | 0.06212 | 0.08526 | 2.314 | 14.174 |
120 | 0.06910 | 0.08143 | 1.233 | 14.645 |
130 | 0.06840 | 0.07671 | 0.831 | 15.626 |
140 | 0.07441 | 0.06843 | 0.598 | 16.489 |
150 | 0.06657 | 0.09035 | 2.378 | 17.272 |
160 | 0.07046 | 0.08755 | 1.709 | 17.856 |
Parameters | Values |
---|---|
14.19 mm | |
16.85 mm | |
2.66 mm | |
3.2 |
Water Holdup | Maximum Absolute Difference (%) | |
---|---|---|
3.9 | 2.6 | |
1.2 | 1.2 | |
4.2 | 2.8 |
Water Holdup | Maximum Absolute Difference (%) | |
---|---|---|
3.1 | 3.0 | |
1.1 | 1.3 | |
5 | 3.6 | 3.3 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, L.G.; Pao, W.K.S.; Hamid, N.H.; Tang, T.B. Design of Helical Capacitance Sensor for Holdup Measurement in Two-Phase Stratified Flow: A Sinusoidal Function Approach. Sensors 2016, 16, 1032. https://doi.org/10.3390/s16071032
Lim LG, Pao WKS, Hamid NH, Tang TB. Design of Helical Capacitance Sensor for Holdup Measurement in Two-Phase Stratified Flow: A Sinusoidal Function Approach. Sensors. 2016; 16(7):1032. https://doi.org/10.3390/s16071032
Chicago/Turabian StyleLim, Lam Ghai, William K. S. Pao, Nor Hisham Hamid, and Tong Boon Tang. 2016. "Design of Helical Capacitance Sensor for Holdup Measurement in Two-Phase Stratified Flow: A Sinusoidal Function Approach" Sensors 16, no. 7: 1032. https://doi.org/10.3390/s16071032
APA StyleLim, L. G., Pao, W. K. S., Hamid, N. H., & Tang, T. B. (2016). Design of Helical Capacitance Sensor for Holdup Measurement in Two-Phase Stratified Flow: A Sinusoidal Function Approach. Sensors, 16(7), 1032. https://doi.org/10.3390/s16071032