Optimizing the Reliability and Performance of Service Composition Applications with Fault Tolerance in Wireless Sensor Networks
<p>Architecture of a WSN service system.</p> "> Figure 2
<p>Mapping procedure from a service request to a SCA in WSNs by the SB.</p> "> Figure 3
<p>Resource allocation for ASs by the SB.</p> "> Figure 4
<p>Cloud computing platform for the suggested algorithm execution in parallel.</p> "> Figure 5
<p>The cost-reliability curves with alterations in the cost from 80 to 240 under the two expected execution times <span class="html-italic">w<b>*</b></span> = 250 and <span class="html-italic">w<b>*</b></span> = 300 given by user.</p> "> Figure 6
<p>Change of the values of reliability function <span class="html-italic">R</span>(<span class="html-italic">w<b>*</b></span>) along with the execution time <span class="html-italic">w</span> under the given expected execution time <span class="html-italic">w<b>*</b></span> = 250.</p> "> Figure 7
<p>Change of the values of reliability function <span class="html-italic">R</span>(<span class="html-italic">w<b>*</b></span>) along with the execution time <span class="html-italic">w</span> under the given expected execution time <span class="html-italic">w</span><b><span class="html-italic">*</span></b> = 300.</p> "> Figure 8
<p>The values of reliability function <span class="html-italic">R</span>(<span class="html-italic">w<b>*</b></span>) with alterations in the execution time <span class="html-italic">w</span> from 160 to 310 and in the given cost constraint Ω<b><span class="html-italic">*</span></b> from 100 to 160 under the given expected execution time <span class="html-italic">w<b>*</b></span> = 250.</p> "> Figure 9
<p>The values of reliability function <span class="html-italic">R</span>(<span class="html-italic">w<b>*</b></span>) with alterations in the execution time <span class="html-italic">w</span> from 160 to 310 and in the given cost constraint Ω<b><span class="html-italic">*</span></b> from 100 to 160 under the given expected execution time <span class="html-italic">w<b>*</b></span> = 300.</p> "> Figure 10
<p>Algorithm execution time along with the number of clusters growing from 10 to 50.</p> "> Figure 11
<p>The values of reliability function <span class="html-italic">R</span>(<span class="html-italic">w</span><b><span class="html-italic">*</span></b>) with changes in the execution time <span class="html-italic">w</span> from 160 to 310 under the given cost constraint on Ω<b><span class="html-italic">*</span></b> with changes from 100 to 160 and on the two given expected execution times (<span class="html-italic">w</span><b><span class="html-italic">*</span></b> = 250 and <span class="html-italic">w</span><b><span class="html-italic">*</span></b> = 300).</p> "> Figure 12
<p>The selection for the most suitable Ω<b><span class="html-italic">*</span></b> and <span class="html-italic">w</span><b><span class="html-italic">*</span></b> with alterations in the execution time <span class="html-italic">w</span> from 160 to 310 and in the given cost constraint Ω<b><span class="html-italic">*</span></b> from 100 to 160 under the given expected execution time <span class="html-italic">w</span><b><span class="html-italic">*</span></b> = 250.</p> "> Figure 13
<p>The selection for the most suitable Ω<b><span class="html-italic">*</span></b> and <span class="html-italic">w</span><b><span class="html-italic">*</span></b> with alterations in the execution time <span class="html-italic">w</span> from 160 to 310 and in the given cost constraint Ω<b><span class="html-italic">*</span></b> from 100 to 160 under the given expected execution time <span class="html-italic">w</span><b><span class="html-italic">*</span></b> = 300.</p> ">
Abstract
:1. Introduction
2. Reliability and Performance Model for SCAs in WSNs
2.1. Reliability and Performance Definitions for SCAs in WSNs
2.2. Probability Distribution of Performance Rates for Any Component Service
2.3. Structure Function of Performance Rates for SCAs in WSNs
3. Reliability and Performance Definition Based on UGF
3.1. Advantage of UGF Technique
3.2. Reliability and Performance Definitions of SCAs in WSNs Based on UGF
3.3. Composite Operators of Reliability and Performance Indices Based on UGF
4. Reliability and Performance Optimization Algorithm for WSN Service Systems
4.1. Architecture of WSN Service Systems with FT
4.2. FT Model in WSNs Service System
Notation | Definition |
---|---|
c | cluster |
nc, Bc | the number of functionally equivalent SNs in cluster c. |
i, j, y | No. of sensor node in a cluster. |
rci | estimated reliability of i-th sensor node in cluster c. |
τci | constant observation time of i-th sensor node in cluster c. |
kc | The cluster-sink sends one observed data to sink, if at least kc out of nc outputs agree. |
hc | The total number of hardware units in cluster c. |
ac | The availability of each hardware unit in cluster c. |
Hc | The number of hardware units available in cluster c. |
Lc | The number of SNs that can be executed simultaneously in cluster c. |
Tc | The time used for the entire cluster-sink execution. |
T | The random task execution time used for the entire SCA. |
w | A maximal allowed system execution time used for the entire SCA. |
F(T,w) | The system’s acceptability function |
R(w) | The system’s reliability function |
The conditional expected system execution time | |
Qc(x) | The probabilities function of the number of SNs that can be simultaneously executed. |
tci(lc) | The termination time for the SN i when there are lc SNs that can run simultaneously in cluster c. |
m1, m2, ..., | The order of SNs corresponding to of their termination time. |
The random binary variable representing the success of SN mi in cluster c. | |
The PMF of the success of SN mi in cluster c. | |
Composition operator over u-functions | |
The PMF of the number of correct outputs in cluster c after the execution of a group of first j SNs. | |
πjk | The probability that the group of first j SNs produces k correct outputs. |
The u-function representing the conditional PMF pcj(lc(x)), | |
The u-function representing the PMF of the random value Tc. | |
The u-function representing the PMF of T. | |
The u-function representing the conditional PMF of the system execution time T | |
x*c | The permutation of Bc different integer numbers ranging from 1 to Bc. |
yc | The binary vector determining the subset of SNs selected for cluster c, yc = {yc1, …, }. |
ωcb | The cost of SN b used in cluster c |
Ω | The entire system cost |
Ω* | The MAX allowable system cost |
4.2.1. Determining the Number of SNs that Can Be Simultaneously Executed
4.2.2. Determining the Termination Time of SN
Algorithm 1. Calculating the termination time tci(lc) for each SN. |
|
4.2.3. Determining the Reliability and Performance of Each Cluster and the Entire System
4.3. Optimizing the Reliability and Performance for SCAs in WSNs
4.3.1. Evaluating the Execution Time Distribution of Clusters
Algorithm 2. Evaluating the probability distribution pcj(lc) of execution time of clusters. |
|
4.3.2. Evaluating the Execution Time Distribution of the Entire System
4.3.3. Evaluating the Different Clusters Consecutively Executed on the Same Hardware
4.3.4. Optimizing the Structure of SCAs in WSNs
5. Experiments and Analysis
No. of Cluster | Lc | kc | Indices | No. of Sensor Nodes in Each Cluster | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |||||
1 | 3 | 4 | τ | 17 | 12 | 9 | 32 | 10 | 55 | - | - | |
c | 5 | 7 | 10 | 9 | 8 | 4 | - | - | ||||
r | 0.82 | 0.80 | 0.97 | 0.92 | 0.94 | 0.88 | - | - | ||||
2 | 3 | 3 | τ | 27 | 38 | 22 | 41 | 47 | - | - | - | |
c | 10 | 9 | 12 | 4 | 7 | - | - | - | ||||
r | 0.81 | 0.89 | 0.95 | 0.88 | 0.94 | - | - | - | ||||
3 | 5 | 6 | τ | 17 | 22 | 36 | 25 | 15 | 39 | 29 | 43 | |
c | 9 | 2 | 14 | 7 | 10 | 8 | 15 | 13 | ||||
r | 0.91 | 0.80 | 0.96 | 0.88 | 0.93 | 0.95 | 0.97 | 0.97 | ||||
4 | 3 | 3 | τ | 7 | 5 | 10 | 22 | - | - | - | - | |
c | 5 | 8 | 9 | 10 | - | - | - | - | ||||
r | 0.75 | 0.85 | 0.93 | 0.97 | - | - | - | - | ||||
5 | 2 | 4 | τ | 25 | 15 | 13 | 27 | 48 | - | - | - | |
c | 4 | 8 | 12 | 7 | 10 | - | - | - | ||||
r | 0.87 | 0.85 | 0.96 | 0.90 | 0.98 | - | - | - |
5.1. Experimental Environment
5.2. Experimental Analysis
w* | Ω* | Execution Sequence of SNs x* | Tmin | Tmax | Ω | R(250) | |
---|---|---|---|---|---|---|---|
250 | 160 | 6435|352|316875|423|5317 | 181 | 289 | 160 | 197.25 | 0.901 |
140 | 2316|345|426175|213|2451 | 173 | 274 | 127 | 215.68 | 0.847 | |
120 | 4612|415|432156|241|2341 | 218 | 257 | 118 | 239.73 | 0.764 | |
100 | 6152|452|852164|213|2541 | 199 | 238 | 97 | 248.41 | 0.692 | |
300 | 160 | 6435|352|316875|423|3751 | 289 | 317 | 158 | 222.27 | 0.931 |
140 | 3162|354|542761|231|2451 | 257 | 277 | 132 | 239.44 | 0.861 | |
120 | 1642|145|164325|241|4123 | 263 | 243 | 114 | 247.68 | 0.819 | |
100 | 2615|425|154268|213|5241 | 205 | 231 | 100 | 256.43 | 0.753 |
5.3. A Distinct Approach to Selecting the Most Suitable Ω* and w*
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bellavista, P.; Cardone, G.; Corradi, A.; Foschini, L. The Future Internet convergence of IMS and ubiquitous smart environments: An IMS-based solution for energy efficiency. J. Netw. Comput. Appl. 2012, 35, 1203–1209. [Google Scholar] [CrossRef]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. Int. J. Grid Comput. Esci. 2013, 29, 1645–1660. [Google Scholar] [CrossRef]
- Glombitza, N.; Ebers, S.; Pfisterer, D.; Fischer, S. Using BPEL to Realize Business Processes for an Internet of Things. In Ad-Hoc, Mobile, and Wireless Networks; Frey, H., Li, X., Ruehrup, S., Eds.; Springer Berlin Heidelberg: Berlin, Germany, 2011; Volume 6811, pp. 294–307. [Google Scholar]
- Gaynor, M.; Moulton, S.L.; Welsh, M.; LaCombe, E.; Rowan, A.; Wynne, J. Integrating wireless sensor networks with the grid. IEEE Internet Comput. 2004, 8, 32–39. [Google Scholar] [CrossRef]
- Faghih, M.M.; Moghaddam, M.E. SOMM: A New Service Oriented Middleware for Generic Wireless Multimedia Sensor Networks Based on Code Mobility. Sensors 2011, 11, 10343–10371. [Google Scholar] [CrossRef] [PubMed]
- Guinard, D.; Trifa, V.; Karnouskos, S.; Spiess, P.; Savio, D. Interacting with the SOA-Based Internet of Things: Discovery, Query, Selection, and On-Demand Provisioning of Web Services. IEEE Trans. Serv. Comput. 2010, 3, 223–235. [Google Scholar] [CrossRef]
- Kyusakov, R.; Eliasson, J.; Delsing, J.; van Deventer, J.; Gustafsson, J. Integration of Wireless Sensor and Actuator Nodes With IT Infrastructure Using Service-Oriented Architecture. IEEE Trans. Ind. Inform. 2013, 9, 43–51. [Google Scholar] [CrossRef]
- Tong, E.D.; Niu, W.J.; Li, G.; Tang, D.; Chang, L.; Shi, Z.Z.; Ci, S. Bloom filter-based workflow management to enable QoS guarantee in wireless sensor networks. J. Netw. Comput. Appl. 2014, 39, 38–51. [Google Scholar] [CrossRef]
- Sheng, Q.Z.; Qiao, X.Q.; Vasilakos, A.V.; Szabo, C.; Bourne, S.; Xu, X.F. Web services composition: A decadeʼs overview. Inf. Sci. 2014, 280, 218–238. [Google Scholar] [CrossRef]
- Wu, Z.; Xiong, N.X.; Han, W.L.; Huang, Y.N.; Hu, C.Y.; Gu, Q.; Hang, B. A Fault-Tolerant Method for Enhancing Reliability of Services Composition Application in WSNs Based on BPEL. Int. J. Distrib. Sens. Netw. 2013, 2013, 493678. [Google Scholar] [CrossRef]
- Liu, Y.; Seet, B.C.; Al-Anbuky, A. IEEE, In-Network Storage for Virtual Broker-Based Publish/Subscribe in WSNs. In Proceedings of the 2012 IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (Pimrc), Sydney, Australia, 9–12 September 2012; pp. 2553–2558.
- Russello, G.; Mostarda, L.; Dulay, N. A policy-based publish/subscribe middleware for sense-and-react applications. J. Syst. Softw. 2011, 84, 638–654. [Google Scholar] [CrossRef]
- De Pauw, T.; Volckaert, B.; Hristoskova, A.; Ongenae, V.; de Turck, F. Symbiotic Service Composition in Distributed Sensor Networks. Int. J. Distrib. Sens. Netw. 2013, 2013, 684563. [Google Scholar] [CrossRef]
- Choi, M.; Jeong, Y.S.; Park, J.H. Improving Performance through REST Open API Grouping for Wireless Sensor Network. Int. J. Distrib. Sens. Netw. 2013, 2013, 958241. [Google Scholar] [CrossRef]
- Lisnianski, A.; Levitin, G. Multi-state system reliability: Assessment, optimization and applications. Proc. Eng. 2003, 29, 531–536. [Google Scholar]
- Cheng, H.J.; Chen, Y.Z.; Xiong, N.X.; Li, F.F. Layer-Based Data Aggregation and Performance Analysis in Wireless Sensor Networks. J. Appl. Math. 2013, 2013, 12. [Google Scholar] [CrossRef]
- Cheng, H.J.; Guo, R.L.; Su, Z.H.; Xiong, N.X.; Guo, W.Z. Service-Oriented Node Scheduling Schemes with Energy Efficiency in Wireless Sensor Networks. Int. J. Distrib. Sens. Netw. 2014, 2014, 12. [Google Scholar] [CrossRef]
- Dai, L.; Chang, Y.; Shen, Z. An optimal task scheduling algorithm in wireless sensor networks. Int. J. Comput. Commun. Control 2011, 6, 101–112. [Google Scholar] [CrossRef]
- Seo, H.; Shim, K.A.; Kim, H. Performance enhancement of TinyECC based on multiplication optimizations. Secur. Commun. Netw. 2013, 6, 151–160. [Google Scholar] [CrossRef]
- Torres, C.; Glosekotter, P. Reliable and energy optimized WSN design for a train application. J. Syst. Architect. 2011, 57, 896–904. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, H.S.; Ling, Y.; Pan, C.; Sun, W. Task Allocation for Wireless Sensor Network Using Modified Binary Particle Swarm Optimization. IEEE Sens. J. 2014, 14, 882–892. [Google Scholar] [CrossRef]
- Ross, S.M. Multivalued state element system. Ann. Probab. 1979, 7, 379–383. [Google Scholar] [CrossRef]
- Murhland, J. Fundamental Concepts and Relations for Reliability Analysis of Multistate System: Reliability and Fault Tree Analysis, Theoretical and Applied Aspects of System Reliability. SIAM 1975, 8, 581–618. [Google Scholar]
- Barlow, R.; Wu, A. Coherent system with multistate elements. Math. Oper. Res. 1978, 3, 275–281. [Google Scholar] [CrossRef]
- Levitin, G. Reliability and performance analysis for fault-tolerant programs consisting of versions with different characteristics. Reliab. Eng. Syst. Saf. 2004, 86, 75–81. [Google Scholar] [CrossRef]
- Liu, J.L.; Yue, D. Event-triggering in networked systems with probabilistic sensor and actuator faults. Inf. Sci. 2013, 240, 145–160. [Google Scholar] [CrossRef]
- Yu, H.Y.; Zhuang, Y.; Wang, W. Distributed H-infinity filtering in sensor networks with randomly occurred missing measurements and communication link failures. Inf. Sci. 2013, 222, 424–438. [Google Scholar] [CrossRef]
- Aveyard, R.L. Boolean Model for a Class of Discrete Event Systems. IEEE Trans. Syst. Man Cybern. 1974, SMC4, 249–258. [Google Scholar] [CrossRef]
- Broadbent, S.R. The Inspection of a Markov Process. J. R. Stat. Soc. Ser. B-Stat. Methodol. 1958, 20, 111–119. [Google Scholar]
- Marseguerra, M.; Zio, E.; Devooght, J.; Labeau, P.E. A concept paper on dynamic reliability via Monte Carlo simulation. Math. Comput. Simul. 1998, 47, 371–382. [Google Scholar] [CrossRef]
- Ushakov, I.A. Solution of multicriterial discrete optimization problems using a universal generating function. Sov. J. Comput. Syst. Sci. 1987, 25, 21–27. [Google Scholar]
- Levitin, G. A universal generating function approach for the analysis of multi-state systems with dependent elements. Reliab. Eng. Syst. Saf. 2004, 84, 285–292. [Google Scholar] [CrossRef]
- Elneweihi, E.; Proschan, F.; Sethuraman, J. Multistate Coherent Systems. J. Appl. Probab. 1978, 15, 675–688. [Google Scholar] [CrossRef]
- Ushakov, I. Optimal standby problems and a universal generating function. Sov. J. Comput. Syst. Sci. 1987, 25, 79–82. [Google Scholar]
- Levitin, G.; Lisnianski, A.; Ben-Haim, H.; Elmakis, D. Redundancy optimization for series-parallel multistate systems. IEEE Trans. Reliab. 1998, 47, 165–172. [Google Scholar] [CrossRef]
- Yeh, W.C. A modified universal generating function algorithm for the acyclic binary-state network reliability. IEEE Trans. Reliab. 2012, 61, 702–709. [Google Scholar] [CrossRef]
- Yeh, W.C.; Yeh, Y.M. A novel label universal generating function method for evaluating the one-to-all-subsets general multistate information network reliability. IEEE Trans. Reliab. 2011, 60, 470–478. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Xiong, N.; Huang, Y.; Xu, D.; Hu, C. Optimizing the Reliability and Performance of Service Composition Applications with Fault Tolerance in Wireless Sensor Networks. Sensors 2015, 15, 28193-28223. https://doi.org/10.3390/s151128193
Wu Z, Xiong N, Huang Y, Xu D, Hu C. Optimizing the Reliability and Performance of Service Composition Applications with Fault Tolerance in Wireless Sensor Networks. Sensors. 2015; 15(11):28193-28223. https://doi.org/10.3390/s151128193
Chicago/Turabian StyleWu, Zhao, Naixue Xiong, Yannong Huang, Degang Xu, and Chunyang Hu. 2015. "Optimizing the Reliability and Performance of Service Composition Applications with Fault Tolerance in Wireless Sensor Networks" Sensors 15, no. 11: 28193-28223. https://doi.org/10.3390/s151128193
APA StyleWu, Z., Xiong, N., Huang, Y., Xu, D., & Hu, C. (2015). Optimizing the Reliability and Performance of Service Composition Applications with Fault Tolerance in Wireless Sensor Networks. Sensors, 15(11), 28193-28223. https://doi.org/10.3390/s151128193